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a b s t r a c t

A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic reso-
nance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental
challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-
noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept
of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large
quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in
a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains
the unique fluid signatures, and the second matrix contains the relative contributions of the signatures
for each measurement sample. No a priori information or subjective assumptions about the underlying
features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders
of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures.
Compared to traditional methods of NMR fluid characterization which only use the information content
of a single measurement, the newmethodology uses the orders-of-magnitude higher information content
of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in
challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil
reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in
interstitial pores can be accurately obtained.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Nuclear magnetic resonance (NMR) well-logging is one of the
most widely used technologies for characterization of the proper-
ties of the earth’s subsurface. NMR tools can be lowered on an elec-
trical cable in a well drilled into the earth, and a record of NMR
measurements are made as a function of depth along the well as
the tool is brought up. The depth of investigation of the NMR tools
is few inches into the earth from the wall of the well [13]. A pri-
mary application of NMR well-logging is fluid characterization,
which includes identification of the types of fluids present in the
pores of the rocks and estimation of fluid volumes. Modern NMR
logging tools can provide multi-dimensional measurements of dif-
fusion (D), T1 and T2 relaxation time of pore fluids at Larmor fre-
quencies ranging from few hundred kilohertz to several
megahertz [8,7]. The contrasts in D, T1 or T2 responses can be used
to differentiate the type of fluids and to estimate fluid volumes.

Anexampleof amulti-dimensionalNMRwell log is simultaneous
D-T2measurement. Apulse sequencecommonlyused for simultane-
ous D-T2 measurement is the diffusion editing (DE) sequence [11].
DE sequences are similar to Carr-Purcell-Meiboom-Gill (CPMG)
sequences except that the initial few echoes (usually one or two)
are acquired with long echo spacings, and the subsequent echoes
are acquiredwith the shortest possible echo spacing. The amplitude
of the nth echo in a DE sequence consisting of a single echo acquired
with long echo spacing is given as,
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In Eq. (1) c is the proton gyromagnetic ratio, D is fluid diffusion
coefficient, T2 is fluid relaxation time, TEL and TES are the long and
short echo spacing, and g0 is background field gradient. f(D,T2) is
the joint diffusion and relaxation time distribution, and f(g0) is
the background magnetic field gradient distribution. The joint
diffusion-relaxation time distributions, f(D,T2), are obtained from
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the inversion of the echo data acquired using DE sequences with
variable long echo spacings. From either visual inspection of the
peaks observed in the D-T2 distributions (referred to as D-T2 maps)
or from simple interpolation techniques, the fluid types and vol-
umes can be estimated. A fundamental challenge of these interpre-
tation methods is that the features in the multi-dimensional maps
are poorly resolved. The poor resolution obscures, or, in some cases,
eliminates the contrasts in fluid responses thereby rendering fluid
characterization impossible. There are two primary causes of the
poor resolution of features in NMR maps – (1) poor signal-
to-noise ratio (SNR) of NMR logging measurements and (2) the
ill-conditioned nature of NMR inversions. Several factors could con-
tribute to the poor SNR of NMR logging measurements such as high
temperature of the subsurface earth, high salinity of drilling fluids,
and small volumes of measurable fluids in rock pores. The inversion
of NMR data is an ill-conditioned problem in the sense that many
solutions could fit the data within the noise statistics [18]. The most
common method for overcoming the ill-conditioned nature of NMR
inversions is to use Tikonov regularization to find a solution that fits
the data and satisfies additional constraints [20]. Regularization
makes the solution stable but distorts the solutions by contributing
to the broadening of the peaks. The following simulation illustrates
the deterioration in the resolution of NMR maps due to regulariza-
tion. The left panel of Fig. 1 shows a model D-T2 response consisting
of two peaks corresponding to two fluid types. The mean diffusion
coefficients of the peaks were 2.5 � 10�5 and 5 � 10�6 cm2/s which
correspond respectively to the diffusion coefficients of water and
a viscous oil at room temperature. NMR echoes were simulated
using Eq. (1) for DE pulse sequence consisting of 8 echo trains with
linearly increasing TEL. A uniform gradient of 20 G/cm was assumed
for the background magnetic field gradient. The short echo spacing
(0.2 ms) and SNR (10) were representative of values for well-
logging measurements. The pulse sequence parameters are shown
in Table 1. The D-T2 map obtained from inversion of the simulated
data using Tikhonov regularization is shown in the right panel of
Fig. 1. Compared to the model D-T2 map, the inverted map shows
a single peak. Such lack of resolution of peaks in multi-
dimensional maps renders fluid characterization quite challenging.

This paper introduces a novel methodology for accurate resolu-
tion of fluid signatures from multi-dimensional maps obtained
from NMR logging measurements. The methodology is based on
an unsupervised machine-learning concept called blind source
separation (BSS) that aims to uncover hidden patterns in the data
without any a priori information or model. Broadly speaking, BSS
is the separation of a set of signals from a set of mixed signals,
without the help of information (or with very little information)
about the source signals or the mixing process. BSS encompasses
a family of techniques which utilize specific statistical and mathe-
matical properties of the sources to enable separation. A powerful
BSS technique is called non-negative matrix factorization (NMF).
By imposing a non-negativity constraint on the sources, NMF pro-
duces a parts-based decomposition of the data [16]. Applications of
NMF span a wide range including text mining, bioinformatics,
spectral data analysis and clustering [17,9,15]. The application of
NMF for fluid characterization from NMR logging measurements,
first developed and introduced by Anand et al. [4], is outlined
below.

The methodology for resolution of fluid signatures is based on
the premise that the measured NMR response of a rock is a linear
combination of NMR responses of different fluids present in the
rock. This assumption is generally valid, and, in fact, inherent in
the models used for inversion of NMR logging data. The normalized
data (i.e., multi-dimensional maps) from the entire logged interval
are vectorized and arranged as columns of a matrix. The resulting
database matrix is factorized into the product of two non-negative
matrices. The first matrix contains the unique NMR signatures of

fluids present in the earth. The second matrix contains the relative
contribution of the fluids in each measurement sample. The
non-negativity constraint ensures that only additive, and not sub-
tractive, combinations of the fluid signatures are allowed. The
methodology is capable of uncovering the fluid signatures without
any a priori knowledge. Another advantage of the methodology is
that a large number of measurements are resolved into just a few
(often fewer than 10) underlying features. The orders-of-magnitude
reduction in the data dimensionality greatly simplifies the visualiza-
tion of the fluid signatures and subsequent interpretation.

The paper is organized as follows. The next section describes
the mathematical theory of the BSS-NMF (hereafter referred to as
BSS) methodology. The following section shows the numerical val-
idation of the BSS methodology for accurate fluid characterization
from D-T2 well-logging measurements. Simulations show that the
BSS methodology can accurately predict the fluid signatures and
volumes from low SNR D-T2 measurements. The application of
the methodology for extracting fluid signatures from T1-T2 mea-
surements in a heavy oil reservoir is described in the last section.

2. Theory

Let us consider that there exists a collection of multi-
dimensional measurements consisting of N samples. Each sample
in the collection represents a measurement with distinct propor-
tions of individual constituents of a system. Let vj represent the
jth sample in the collection. The number of elements in each
multi-dimensional measurement is M. The BSS methodology pos-
tulates that each measurement in the collection can be approxi-
mated as a linear combination of unknown underlying features
(called sources). Mathematically, the linear approximation can be
described as follows:

v j � h1;j½w1� þ h2;j½w2� þ � � �hr;j½wr� ¼ Whj ð2Þ
In Eq. (2), W is an M � r matrix containing the underlying features,
wi, as its columns. The array hj(r � 1) contains the coefficients of lin-
ear combination. Combining all measurements in the collection, vj,
as columns of a matrix V (M � N) and combining the coefficients hj
as columns of matrix H (r � N), Eq. (2) can be written as,

V � WH ð3Þ
Matrices W and H are respectively called the feature and coefficient
matrices. Eq. (3) shows that the linear approximation of Eq. (2) is
equivalent to a matrix factorization. This factorization produces a
linear decomposition of the data such that the data are expressed
as the sum of its parts (i.e., sources). No assumption or a priori infor-
mation about the underlying features is inherent in this
factorization.

The factorization problem of Eq. (3) is solved by imposing a con-
straint that matricesW and H are non-negative. The non-negativity
constraint ensures that the sources in matrix W are physically
meaningful, and that only additive combinations of the sources
are allowed. A cost function is defined that quantifies the recon-
struction error between V and WH, as shown in Eq. (4):

v ¼ kV �WHk2 ð4Þ
The cost function is minimized with the non-negativity con-

straints on matrices W and H,

W P 0; H P 0 ð5Þ
The cost function of Eq. (4) is convex in W only or H only. How-

ever, it is not simultaneously convex in both W and H together.
Therefore, a unique solution to the minimization problem is not
always possible. Despite this limitation, numerical techniques are
available that can provide a local minima of the cost function
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