Accepted Manuscript

Anisotropic phantom to calibrate high-q diffusion MRI methods

M.E. Komlosh, D. Benjamini, A.S. Barnett, V. Schram, F. Horkay, A.V. Avram, P.J. Basser

PII: S1090-7807(16)30252-X

DOI: http://dx.doi.org/10.1016/j.jmr.2016.11.017

Reference: YJMRE 5997

To appear in: Journal of Magnetic Resonance

Received Date: 10 August 2016 Revised Date: 29 November 2016 Accepted Date: 29 November 2016

Please cite this article as: M.E. Komlosh, D. Benjamini, A.S. Barnett, V. Schram, F. Horkay, A.V. Avram, P.J. Basser, Anisotropic phantom to calibrate high-q diffusion MRI methods, *Journal of Magnetic Resonance* (2016), doi: http://dx.doi.org/10.1016/j.jmr.2016.11.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Anisotropic phantom to calibrate high-q diffusion MRI methods

M. E. Komlosh ^{1,2}, D. Benjamini¹, A. S. Barnett¹, V. Schram³, F. Horkay¹, A. V. Avram¹, P. J. Basser¹

¹Section on Quantitative Imaging and Tissue Sciences, *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; ²Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA; ³Microscopy and Imaging Core, *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Abstract

A silicon oil-filled glass capillary array is proposed as an anisotropic diffusion MRI phantom. Together with a computational/theoretical pipeline these provide a gold standard for calibrating and validating high-q diffusion MRI experiments. The phantom was used to test high angular resolution diffusion imaging (HARDI) and double pulsed-field gradient (d-PFG) MRI acquisition schemes. MRI-based predictions of microcapillary diameter using both acquisition schemes were compared with results from optical microscopy. This phantom design can be used for quality control and quality assurance purposes and for testing and validating proposed microstructure imaging experiments and the processing pipelines used to analyze them.

Download English Version:

https://daneshyari.com/en/article/5404704

Download Persian Version:

https://daneshyari.com/article/5404704

<u>Daneshyari.com</u>