
gr-MRI: A software package for magnetic resonance imaging using
software defined radios

Christopher J. Hasselwander a,c, Zhipeng Cao a,c, William A. Grissom a,b,c,⇑
aDepartment of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
bDepartment of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
cVanderbilt University Institute of Imaging Science, Nashville, TN, USA

a r t i c l e i n f o

Article history:
Received 18 March 2016
Revised 3 June 2016
Accepted 30 June 2016
Available online 1 July 2016

Keywords:
Software-defined radio
Spectrometers
Open-source software
MRI
Frequency-swept RF pulses

a b s t r a c t

The goal of this work is to develop software that enables the rapid implementation of custom MRI spec-
trometers using commercially-available software defined radios (SDRs). The developed gr-MRI software
package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for
GNU Radio, an open-source SDR software package that is widely used in communications research. gr-
MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio syn-
chronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a
single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin
echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used
to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-
available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse gen-
eration. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization
events and the frequency with which the software recovered from those events was also measured, and
the SDR’s ability to generate frequency-swept RF waveforms was validated and compared to the scan-
ner’s commercial spectrometer. The spin echo images geometrically matched those acquired using the
commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely
to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the
sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth
frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with
large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-
fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
� 2016 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Modern commercial magnetic resonance imaging (MRI) and
nuclear magnetic resonance (NMR) spectrometers are sophisti-
cated devices with very high performance. However, many
research and development applications in magnetic resonance
require more configurable, portable, or scalable spectrometers at
a low cost. For example, spectrometers have been developed in-
house to meet the unique needs of low-field MRI scanners [1,2],
deliver point-of-care relaxometry measurements [3], hyperpolar-
ize exogenous contrast agents [4], increase the number of receive

channels in parallel imaging [5–7], implement parallel transmis-
sion [7–9], and acquire signals in NMR field monitoring probes
concurrently with imaging [10–12]. In particular, many recent sys-
tems have been designed around field programmable gate arrays
(FPGAs) which perform sequencing and signal processing functions
[1,3,7,13–16]. FPGAs are particularly well-suited for MR at Larmor
frequencies of tens to hundreds of megahertz since they can pro-
cess multiple streams of transmitted and received data in parallel
at high speeds.

While FPGAs are well-suited to application in high-frequency
MR spectrometers, replicating current FPGA-based spectrometers
is challenging for non-electronics experts due to the steep learning
curve involved in FPGA programming, and since most are based on
custom circuitboard designs that would be difficult for non-experts
to recreate. At the same time, communications research has bene-
fited in recent years from the development of the open-source GNU

http://dx.doi.org/10.1016/j.jmr.2016.06.023
1090-7807/� 2016 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Institute of Imaging Science, Vanderbilt University,
1161 21st Ave. South, MCN AA-3114, Nashville, TN 37232-2310, USA.

E-mail addresses: christopher.j.hasselwander@vanderbilt.edu (C.J. Hasselwan-
der), zhipeng.cao@vanderbilt.edu (Z. Cao), will.grissom@vanderbilt.edu (W.A.
Grissom).

Journal of Magnetic Resonance 270 (2016) 47–55

Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmr.2016.06.023&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.jmr.2016.06.023
http://creativecommons.org/licenses/by/4.0/
mailto:christopher.j.hasselwander@vanderbilt.edu
mailto:zhipeng.cao@vanderbilt.edu
mailto:will.grissom@vanderbilt.edu
http://dx.doi.org/10.1016/j.jmr.2016.06.023
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr

Radio software (gnuradio.org), which enables non-hardware
experts to build custom software radios that can be used with a
wide range of low-cost software-defined radio (SDR) devices; at
the time of writing, the GNU Radio website listed ten compatible
SDR vendors, many of which offer several SDR models [17]. SDRs
typically comprise analog-to-digital and digital-to-analog convert-
ers, an FPGA for basic filtering and signal down- and up-
conversion, and a USB interface. They can be thought of as PC
sound cards that operate at RF frequencies, in that they act as an
interface between the digital computer and the analog world,
while the PC handles most of the real-time digital signal manipu-
lations. Depending on their feature set, commercial GNU Radio-
compatible SDRs currently cost between a few hundred and a
few thousand dollars and ship with FPGA software images, so the
user can focus on implementing the functionality of their radios
on the PC side. Software radios are built in the Python program-
ming language (python.org) in GNU Radio, by connecting modular
signal processing components together into a flowgraph, the
inputs and outputs of which are connected to the SDR via a driver
interface.

We describe an open-source software package that extends the
functionality of GNU Radio to perform MRI experiments. The pack-
age comprises a set of Python scripts and two C++-based GNU
Radio flowgraph elements. It implements system timing calibra-
tions, center frequency and transmit power optimization, shaped
RF and gradient pulses, image reconstruction, and three represen-
tative MR imaging sequences: gradient echo, spin echo, and inver-
sion recovery. It was used to operate a commercial 0.5 Tesla
tabletop MRI scanner with a pair of commercially-available SDRs
that generated all RF and gradient pulses and sampled received sig-
nals. Overall, the software will enable users to rapidly implement
customMRI spectrometers, without recreating or developing hard-
ware. Since it is built on top of the active GNU Radio project, the
software will be compatible with a wide range of current and
future SDR devices. By convention, extensions to GNU Radio are
prefixed with ‘gr-’, so the software is called gr-MRI.

2. Software architecture and implementation

2.1. A basic single-pulse sequence in GNU Radio

To illustrate how GNU Radio works and to motivate the archi-
tecture and features of the gr-MRI package, Fig. 1a shows an imple-
mentation of the most basic NMR pulse sequence using standard
GNU Radio, without gr-MRI. The sequence comprises a single-
pulse excitation with simultaneous reception of the free induction
decay (FID) signal. Specifically, the figure shows a graphical repre-
sentation of this sequence’s flowgraph in GNU Radio Companion, a
GUI-based flowgraph editor packaged with GNU Radio. A GNU

Radio flowgraph is made up of signal generation, signal processing,
and input and output blocks, which are connected by virtual wires
that transmit baseband signals between them. The virtual wires
connect to the blocks at orange ports if they are real-valued float-
ing point signals, and at blue ports if they are complex-valued
floating point signals. Wires conduct signals in one direction, indi-
cated by the arrows. A signal can be connected to as many inputs
as desired, but each input can accept only one signal. All the signal
processing implemented in a flowgraph happens in real-time on
the PC, with inputs and outputs that are connected via a USB or
other interface to stream data continuously between the PC and
the SDR. All signals in the flowgraph are at baseband; modulation
to and from the RF Larmor frequency is performed digitally by the
FPGA chip in the SDR.

In the flowgraph of Fig. 1a, the blocks that produce a baseband
rectangular excitation pulse are outlined in red. The pulse is made
by generating a square wave signal with period equal to the
sequence repetition time (TR) and range zero to one, duplicating
it and subtracting one from its copy to shift it to a range of �1 to
zero so that the copy is half a period out of phase and negated com-
pared to the original, then negating the copy and delaying it by ten
samples, and multiplying it with the original signal to obtain a ten-
sample rectangular pulse. The pulse repeats once per TR and its
duration in seconds is determined by the sample rate of the flow-
graph; in Fig. 1a the 500 kHz sample rate of the flowgraph dictates
that the ten sample pulse is twenty microseconds long. Then the
real-valued rectangular pulse signal is converted to a complex sig-
nal type (with zero imaginary component) and passed into the
USRP Sink block (green box), which interfaces to the transmit
channels of a Universal Software Radio Peripheral SDR (USRP; Ettus
Research, Santa Clara, CA, USA). In this case, only one transmit
channel is used. The demodulated received signal comes back into
the flowgraph via the USRP Source block (blue box) which inter-
faces to the receive channels of the SDR; in this case, only one
receive channel is used. The received signal is then sent to an oscil-
loscope block for continuous display. The Larmor frequency is
specified as an argument to the USRP Sink and Source so that the
SDR’s FPGA digitally modulates the excitation pulse from baseband
to the Larmor frequency, and demodulates received signals to
baseband from the Larmor frequency. The flowgraph is free-
running, and does not record data. Fig. 1b shows the oscilloscope
window that appears when the flowgraph is executed, which dis-
plays the demodulated FID signal in real-time.

This example illustrates that GNU Radio flowgraphs run contin-
uously and are not inherently sequenced as is required for MR
experiments. Furthermore, the software lacks the ability to gener-
ate shaped waveforms such as sinc excitation pulses and gradient
trapezoids with specific timing, as well as the ability to change
pulse amplitudes and phases between repetitions. It also lacks

Fig. 1. (a) Basic single-pulse GNU Radio flowgraph without gr-MRI elements. The outlined boxes contain the rectangular excitation pulse generation blocks (red), blocks that
scale the pulse to a desired amplitude and send it to the SDR (green), and the receive chain (blue), comprising a USRP Source block that brings received baseband RF signals
back from the radio into the flowgraph, and an oscilloscope block to continuously display the received signal. Orange ports on the blocks denote real-valued floating point
inputs and outputs, and blue ports denote complex-valued floating point inputs and outputs. (b) The oscilloscope window that appears when the flowgraph is executed,
showing the baseband FID signal in real-time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

48 C.J. Hasselwander et al. / Journal of Magnetic Resonance 270 (2016) 47–55

http://www.gnuradio.org
http://www.python.org

Download	English	Version:

https://daneshyari.com/en/article/5404744

Download	Persian	Version:

https://daneshyari.com/article/5404744

Daneshyari.com

https://daneshyari.com/en/article/5404744
https://daneshyari.com/article/5404744
https://daneshyari.com/

