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An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional dif-
fusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by
Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method
have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the
ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner

- of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method,
ﬁe&‘]’{mrds' the current method directly calculates ISA as A(K(t'), t' + dt')[A(K(t'), t'), where A(K(t'), t' +dt’) and A(K(t'),
MRI t') are the SA. This modification makes the current method applicable to PFG FD as the instantaneous
Propagator propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect
Fractional diffusion of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-
PFG homogeneous gradient field. The SA expressions were successfully obtained for all three types of free
FDs while other current methods still have difficulty in obtaining all of them. The results from this
method agree with reported results such as that obtained by the effective phase shift diffusion equation
(EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expres-
sion for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time ran-
dom walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results
agree with the analytical results. Particularly, the CTRW simulation results give good support to the ana-
lytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative
model where there have been no corresponding theoretical reports to date. The theoretical SA expres-

sions including FGPW obtained here such as E,; [—sz j'é K’f(t’)dt’“} may be applied to analyze PFG FD

in polymer or biological systems with improved accuracy where SGP approximation cannot be satisfied.
The method can perhaps provide new insight to FD MRI and hence benefit the development of diffusion
biomarkers based on fractional derivative.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The pulsed field gradient (PFG) diffusion experiment [1-3] has
many applications in NMR and MRI. Anomalous dynamical behav-
ior [4] exists in many systems. Unlike the familiar Gaussian charac-
teristics of normal diffusion (ND), the anomalous diffusion often
shows non-Gaussian characteristics [5,6]. The non-Gaussian diffu-
sion may be a challenge to be interpreted by the conventional
approaches. For example, conventional time-dependent diffusivi-
ties may be not sufficient for interpreting the data including large
b-value in the study of water diffusion in brain tissue by MRI [5,6].
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To interpret the anomalous diffusion, the researchers have made
many experimental and theoretical efforts such as the propagator
representation [7], Gaussian phase distribution (GPD) approxima-
tion [8,9], short gradient pulse (SGP) approximation [10], the
stretched exponential models [11,12], the walk and spectral
dimension parameters method [13], the modified Bloch equations
[14-16], the log-normal distribution function [17] and the recently
developed effective phase shift diffusion equation (EPSDE) method
[18]. These efforts have yielded encouraging results. In the studies
of stroke by diffusion MR, it has been reported that the quantita-
tive parameters related to the degree of diffusion non-Gaussianity
are much more sensitive to ischemic changes than the ADC [6].
Nevertheless, the PFG anomalous diffusion is still in the early
stages due to the difficulties in the theory and the complexity of
the application systems [6]. Therefore, it is still important to
develop some theoretical treatments for anomalous diffusion.
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Many anomalous diffusion systems have been modeled by the
fractional diffusion equations based on fractional derivative or
fractal derivative (defined in Appendices B and C) [19-23]. The
modified Bloch equations for fractional diffusion based on frac-
tional derivative has been used to obtain the signal attenuation
for space-fractional diffusion successfully, which has been applied
to study water diffusion in brain tissue by MRI. Based on the frac-
tional derivative, the Mittag-Leffler function attenuation obtained
by EPSDE method agrees with molecule diffusing along a curvilin-
ear curve which could exist in the polymer or biological systems
[9,18,24]. From the fractional diffusion equation based on a frac-
tional derivative or fractal derivative, the average square displace-
ment of FD does not increase linearly with the diffusion time
unlike in ND. FD usually has a non-Gaussian probability distribu-

tion function (PDF) such as t*/if (ﬁ) [19,21], where « is the

time derivative order, g is the space derivative order, t is time, z
is the position, and the «j,(x) function is defined in Appendix A
(when o =1, g =2, FD reduces to ND). These non-Gaussian charac-
teristics of FD make it difficult to obtain an analytical SA expression
for the PFG FD experiments. First, the effect of finite gradient pulse
widths (FGPW) is hard to obtain in some types of FD. The FD may
be divided into the following three types: general FD
{0<o,p<2}, time FD {0O<a<2,f=2} and space FD
{=1,0< B <2} [18,19]. Currently, even using the EPSDE and
other methods, it is still difficult to obtain analytical SA expressions
that include the FGPW effect for the two types of FD—time and
general FD—based on the fractional derivative model [18]. For
instance, from the fractal derivative model, the EPSDE method
gives the complete SA expression exp [—Dy f; K"(t)dt“} for describ-
ing free FD, where K(t) is the wavenumber. However, the SA
expression including the FGPW effect by the EPSDE method based
on the fractional derivative was obtained only in the space FD case
[18]. Secondly, there is no analytical SA expression for restricted
diffusion including FGPW effects reported in the literature. Thirdly,
many different experimental variables may be taken into account,
such as that FD may be affected by an inhomogeneous field [25]. It
would be helpful to have an intuitive and general method to
address these challenges and improve our understanding.

In this paper, an instantaneous signal attenuation method is
proposed, which is both a general and intuitive method, that can
be applied to analyze PFG free or restricted FD including the FGPW
effect. The method is based on the propagator approach developed
in 2001 from Ref. [26], which will be referred to as the “original
propagator method”. However, the original propagator method
needs an instantaneous propagator to calculate the ISA expression,
which makes it hard to apply to PFG FD, as the instantaneous prop-
agator may be hard to obtain. To overcome this difficulty, the ISA
method described here obtains the ISA by comparing two consec-
utive SAs at t' and t' + dt’ without the need for the instantaneous
propagator. This method was used to obtain the theoretical SA
expressions for free FD, restricted FD and FD with nonlinear field
case. The motive to study free and restricted FDs is because, in
polymer or biological systems, the investigated short time FD
may be approximated as free FD, while the long time FD may be
treated as restricted diffusion when the domain size or boundary
effect become observable. While the nonlinear field investigated
for ND by researchers may have some potential applications for
FD too. Additionally, to verify these theoretical SA expressions,
continuous-time random walk (CTRW) simulation [27] was per-
formed to simulate the PFG SA for FD. Moreover, the M-Wright
phase distribution approximation (see Appendix D) was also used

to derive a general SA expression E,; [— MJ for time FD that

agrees with ISA method, the results obtained from the ISA method
agree with the simulation results as well as other methods,

particularly the EPSDE method. The ISA method introduced pro-
vides a simple and accurate way to analyze PFG SA.

2. Theory
2.1. From the propagator approach to the ISA method

2.1.1. The original propagator approach for ND

The principal idea of the original propagator approach in Ref.
[26] can be described as follows: because the number of spins in
a macroscopic sample can be viewed as infinitely large, the phase
difference of the spins diffusing to the same location will be aver-
aged out and cannot be distinguished after mixing for every
moment during diffusion. Spatial averaging of the phase shift
results in SA. For free diffusion of the spin system at time t' there
will be an equal number of spins diffusing to location z from both
directions z + Az and z — Az. The average phase shift of these mix-
ing spins is the same as that of the spins remaining at location z
and can be written as

)
P(z,t) = / g (t"zdt" = ZK(t), 1)
0
where
.
K(t) = / ye(t)dt’, )

where 7 is the gyromagnetic ratio, g(t”) is the gradient strength at
time t”, and K(t') is a wavenumber that summarizes the gradient
effect from the beginning of the first gradient pulse to time t’ within
the gradient pulse sequence, and its units are rad/m. The ISA a(z, t/,
dt’) (called ISA factor) at z will be [26]

+00
a(z, t’,dt’):/ o(Z,t')P(z,dt'|Z)) cos[p(Z, 1)

~ oz, t)]dZ / / o2, t)Pa, d |27, 3)

where a(Z, t') is the spin particle density, and P(z, dt'|z') is the PDF
during interval dt' moving from z' to z. As a(Z, t') can be assumed
homogeneous in the sample for free diffusion, the ISA will then be
[26]

a(K(t'),t',dt') = exp(—K?(t)Ddt), (4)

where z drops out as the ISA is equal everywhere for free diffusion,
and we have used a(K(t'), t, dt’) rather than a(z, t', dt') for the ISA.
The total diffusion SA will be the cumulative multiplicative ISA,
which can be expressed as

At) = T[a(K(t), t,df') = exp [—D /[KZ(t’)dt’}. 5)
0

at’

where A(t) is the SA (or so-called attenuation factor) that is defined
as A(t) = S(t)/S(0) (S is the signal intensity). The same expression as
Eq. (5) was derived already by the Torrey modified Bloch equations
and other methods in the literature [18,28,29], and is a convenient
method for calculating the SA produced by a PFG pulse sequence
[30]. For the pulsed gradient spin echo (PGSE) and the pulsed gradi-
ent stimulated-echo (PGSTE) experiments as shown in Fig. 1, from
Eq. (5), the SA is exp [-Dy?g?s* (4 — 15)], which agrees with estab-
lished results [31]. When the diffusion coefficient is time-
dependent, the SA for free ND can be similarly obtained by the
above process,

A(t) = exp {— /O tD(t)Kz(t')dt’}. (6)
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