
Nonadiabatic exchange dynamics during adiabatic frequency sweeps

Thomas M. Barbara
Advanced Imaging Research Center, Oregon Health and Sciences University, Portland, OR 97239, United States

a r t i c l e i n f o

Article history:
Received 15 November 2015
Revised 7 January 2016
Available online 28 January 2016

Keywords:
Adiabatic sweep
Exchange
Rotating frame relaxation

a b s t r a c t

A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency
swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first
order perturbation theory. For anisochronous exchange, new expressions are derived for exchange
augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation
rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived
and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange
unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of
the sensitivity to exchange dynamics will require numerical integration of the rate equations.
Examples of this situation are given for experimentally relevant parameters believed to hold for
in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic
resonance imaging.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the past decade a substantial effort has been made in
exploring the utility of adiabatic frequency sweeps in the study
of exchange and relaxation dynamics in magnetic resonance imag-
ing and spectroscopy [1–4]. This approach is an extension of the
traditional spin locking methodology in common practice since
the first decade of the discovery of NMR, where a constant RF field
is applied on or off resonance to create spin locked magnetization,
with decay behavior that complemented the measurement of lab-
oratory relaxation time constants [5]. The dynamics of frequency
sweeps however, is significantly more complicated than the step
wise constant spin locking fields normally used. Although tests
for adiabatic evolution with regard to spin dynamics are under-
stood, and adiabatic sweeps easily ensured, the combination of
such sweeps in the presence of general conditions of chemical
exchange may not be adiabatic with regard to the total dynamics.
Only in the simplest cases of fast exchange, where the spin param-
eters are population weighted averages of the individual site
parameters, or very slow exchange, where the exchange can be
treated as a first order perturbation, will the conditions for spin
dynamic and exchange dynamic, adiabatic behavior coincide. An
important exchange scenario is that of isochronous exchange
between populations with differing relaxation rate constants [1].
In that case, it is straightforward to obtain general conditions for
adiabatic exchange behavior as shown in this work for two site

exchange. When these conditions are not met, it is necessary to
numerically integrate the dynamic problem using standard
algorithms, such as the well-known Runge–Kutta method.

Prior to the analysis for isochronous exchange and the condi-
tions for the measurement of exchange rates during frequency
sweeps, it is worthwhile to explore the problem in terms of the
Bloch equations for general exchange conditions where the
resonance frequency and relaxation rate constants of each site
may differ. Though straightforward, a detailed exposition of
exchange during a frequency sweep has not appeared in the liter-
ature to the best of the author’s knowledge. Furthermore, the anal-
ysis can guide future experimental work as the use of frequency
sweeps expands into a wider range of applications. A useful
method for treating relaxation during a frequency swept pulse is
offered, as well as new expressions pertinent to the anisochronous,
fast exchange limit. The importance of a proper treatment of the
inhomogeneous terms are also brought to the foreground. An effort
has been made to be complete, even though similar expressions for
parts of the analysis have appeared many times in the literature.
The approach takes a middle ground with respect to algebraic
paucity. For two sites, this is a reasonable compromise that will
hopefully serve a broad range of researchers.

2. Bloch equations for frequency sweeps and exchange
dynamics

A general method for setting up the spin and exchange dynam-
ics can be accomplished by considering the direct product space of
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spin and site labels. For two site exchange considered here, this is a
six dimensional space consisting of three magnetization compo-
nent labels (x,y,z) for each site (a,b). The coupled differential equa-
tions for the spin system can then be expressed in the following
condensed, block matrix format:

_Ma

_Mb

 !
¼ �RaþHaðtÞ�ka1 kb1

ka1 �RbþHbðtÞ�kb1

� �
Ma

Mb

� �
þ R1aMa0

R1bMb0

� �

ð1Þ
Here each bold entry signifies the magnetization vector for each

site which undergoes evolution and relaxation according to the
3 � 3 matrices, Ra, Ha(t) and Rb, Hb(t). The exchange dynamics is
governed by the rate constants ka and kb and the bold 1 represents
the 3 � 3 identity matrix. While this block matrix form is not as
succinct as pure Kronecker product notation, it serves to illustrate
the structure of the dynamics when the adiabatic transformations
are imposed in what follows.

The relaxation matrix for site a = a,b can be written in the form

Ra ¼ 1
3

R1a þ 2R2að Þ1þ 2
3

R1a � R2að Þ
�1=2 0 0
0 �1=2 0
0 0 1

2
64

3
75 ð2Þ

Eq. (2) has the advantage of clearly displaying the transforma-
tion character of the relaxation. For example, the matrix on the
right end is the familiar one for a traceless, axially symmetric
tensor. Likewise, the spin dynamic matrices are expressed in terms
of the standard reduced variables

Ha ¼ Xa

0 cos ha 0
� cos ha 0 sin ha

0 � sin ha 0

2
64

3
75 ð3Þ

with

Xa cos ha ¼ ðxa �xðtÞÞ ð4Þ

Xa sin ha ¼ x1ðtÞ ð5Þ
In these equations, xa is the precession frequency of site a, and

x(t) the time dependent, RF irradiation frequency with amplitude
specified by the instantaneous Rabi frequency, x1(t). Complete
solutions to the coupled differential equations can only
be obtained numerically, especially with time dependent parame-
ters. In the absence of relaxation and exchange, a well-known
approach is to design the sweep so that adiabatic evolution is valid
[6]. The spin evolution is then dominated by the instantaneous
eigenvalues of the spin dynamic variables and adiabatic evolution
will hold for the spin dynamics when Xa is much larger than the
rate of the frequency sweep. For the types of sweep profiles in
common use, this implies that Xa dominates the relaxation rates
as well. It is then straightforward to include relaxation during an
adiabatic sweep without an exact solution to the eigenvalues of
the matrix �Ra + Ha(t). To an excellent approximation one can
use the eigenvalues and eigenvectors of Ha(t) and retain only the
diagonal part of Ra in the diagonal basis set of Ha(t).

Therefore, for each site, the diagonal spin dynamics can be
written as

DaðtÞ ¼
�q2a � iXa 0 0

0 �q2a þ iXa 0
0 0 �q1a

2
64

3
75 ð6Þ

Where the rotating frame relaxation rate constants are

q1a ¼ 1
3
ðR1a þ 2R2aÞ þ 2

3
ðR1a � R2aÞP2ðcos haÞ ð7Þ

q2a ¼ 1
3
ðR1a þ 2R2aÞ � 1

3
ðR1a � R2aÞP2ðcos haÞ ð8Þ

and they can be recast into the more familiar form

q1a ¼ R2a sin
2 ha þ R1a cos2 ha ð9Þ

q2a ¼ 1
2
R2a þ 1

2
ðR1a sin

2 ha þ R2a cos2 haÞ ð10Þ

These rotating frame relaxation rate constants are equivalent to
the expressions derived from rotating frame relaxation theory
when the lattice dynamics are characterized by correlation times
sc such that Xasc � 1. It is remarkable that they can be obtained
from a simple application of first order perturbation theory to
the Bloch equations, as contrasted to the usual detailed operator
relaxation theory [7] and they should hold generally for any of
the usual relaxation mechanisms, as was tested in [8]. It is also
noteworthy that this approach can be applied to the recently
developed RAFF methods for the measurement of relaxation in
fictitious fields, and can provide simple expressions for the effec-
tive relaxation rates constants without recourse to the invariant
trajectory method [9].

The transformation to the diagonal representation of the spin
dynamics is given by the matrix

Va ¼
iffiffi
2

p cos ha � iffiffi
2

p cos ha sin ha

1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
0

� iffiffi
2

p sin ha iffiffi
2

p sin ha cos ha

2
664

3
775 ð11Þ

The usual test for the adiabatic character of the frequency
sweep with respect to the spin dynamics requires that the
elements of Eq. (12)

_V�1
a ðtÞVaðtÞ ¼

_haffiffiffi
2

p
0 0 �i

0 0 i

�i i 0

2
64

3
75 ð12Þ

are small in comparison to the magnitude of Xa. The adiabatic
frame is accomplished by introducing new dependent variables

Na ¼ V�1
a ðtÞMa ð13Þ

By using Eq. (1) to eliminate _Ma from _Na ¼ _V�1
a ðtÞMa þ V�1

a ðtÞ _Ma,
the dynamic equations for the Na become

_Na

_Nb

 !
¼ DaðtÞ� _V�1

a ðtÞVaðtÞ�ka1 kbV
�1
a ðtÞVbðtÞ

kaV
�1
b ðtÞVaðtÞ DbðtÞ� _V�1

b ðtÞVbðtÞ�kb1

" #
Na

Nb

� �

þ R1aV
�1
a Ma0

R1bV
�1
b Mb0

 !
ð14Þ

At this point, Eqs. (1) and (14) are equivalent expressions. It is
now stipulated that the frequency sweep is adiabatic by requiring
that all of the elements of _V�1

a ðtÞVaðtÞ are small relative to the
magnitude of Da(t). Dropping those terms in Eq. (14), the evolution,
now adiabatic with respect to the RF sweep, is generated by

_Na

_Nb

 !
¼ DaðtÞ � ka1 kbV

�1
a ðtÞVbðtÞ

kaV
�1
b ðtÞVaðtÞ DbðtÞ � kb1

" #
Na

Nb

� �
þ R1aV

�1
a Ma0

R1bV
�1
b Mb0

 !

ð15Þ
This condition on the elements of _V�1

a ðtÞVaðtÞ is the most
general condition for adiabatic evolution. An additional caveat is
concerned with the possible effects of Berry’s phase, which occurs
when the diagonal elements of _V�1

a ðtÞVaðtÞ are nonzero. For
frequency sweeps Eq. (12) has no diagonal contributions. A modern
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