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In high-resolution NMR spectroscopy, the variation of the magnetic field inside the sample has a measur-
able impact on lineshape. We present a model to calculate the moments of the internal field, as they
relate to the current that should be set in the compensation coils to level the magnetic perturbations orig-
inating from the sample. We apply this model to common sample geometries, and discuss the practical

Keywords:
NMR
Susceptibility
Lineshape
Sample tube

implications for sample-limited applications.
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1. Introduction

Modern NMR spectrometers routinely achieve resolutions on
the order of parts per billion of the Larmor frequency. Since the
magnetic susceptibility of solvents is typically a thousand times
higher, the samples own de-magnetizing field can be a
non-negligible perturbation. High-resolution measurements com-
monly use elongated sample tubes, following the idea that the field
internal to an infinite cylinder is uniform and amounts to a simple
shift in Larmor frequency. In reality, the discontinuity in suscepti-
bility at both ends of the sample causes rapid variations of the
internal field, but the inhomogeneity is tolerable as long as the col-
umn height is much longer than the window of the probe RF coil.

Spectroscopists or probe designers dealing with limited
amounts of sample have an incentive to shorten the sample col-
umn with respect to the coil length in order to get the most signal
out of their precious material. However, the improved filling factor
comes at the expense of the spectral lineshape which is degraded
when the sample ends are close to the edges of the detection win-
dow, and regions of less homogeneous magnetic field get included
in the probe field of view. Even with a shim system capable of pre-
serving the resolution by compensating for low-order field impuri-
ties, the broadening caused by un-cancelled high-order gradients
results in a loss of peak intensity. For a given sample volume and
natural line width, the optimum choice of sample tube size or coil
length depends on the residual field distribution.
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Most studies of susceptibility effects [1,2] start with numerical
field calculations, then simulate their effect on lineshape. By con-
trast, spectroscopists are interested in the coefficients of the
expansion of the field in zonal and tesseral harmonics, which cor-
respond to the currents that have to be adjusted in the compensa-
tion coils to level the magnetic perturbations [3]. In this paper, we
provide a direct calculation of moments originating from a sample
of finite length, in an approach similar to that of Barbara [4]. We
study several common sample geometries and discuss the implica-
tions of our results on spectral intensity and lineshape.

2. Mathematical model
2.1. Background

In the absence of electric currents, the magnetic field H may be
obtained by solving for the scalar magnetic potential &, which is
defined by the relation:

H=-Vo 1)

The scalar product M - i, where #i is the unit vector normal from
the boundary and M is the magnetization, plays the role of a sur-
face charge density. Although NMR samples are almost never mag-
netically ordered, the polarizing field is in most situations much
stronger than the internal field, and the magnetization can there-
fore be assumed to be uniform to a very good approximation. In
this case, by analogy with electrostatics, the expression for the
magnetic potential is [5]:
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To determine the local Larmor frequency within the sample, we
apply the definition of the potential (Eq. (1)) and calculate the
component of the magnetic field parallel to the polarizing field.
Using the reciprocity between source point and observation point,
we obtain:
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where the spherical coordinate system is defined in Fig. 1. Inside the
sample, the Green’s function |r — r'|~! may be expressed as a sum of
solid harmonics [6]. The factors that depend only on the observation
coordinates r can be moved out of the integral sign to obtain the
Laplace expansion of the magnetic field:
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where P are the associated Legendre functions of degree I and
order m (see Appendix A). The coefficients C, are obtained by inte-
gration over the source variable r'’:
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Under our starting assumption, the magnetization is propor-
tional to the polarization field Hoz and the volumetric magnetic
susceptibility y. After some algebra involving recursion relations
between Legendre functions, expression (5) becomes:
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The coefficients C,, have a practical meaning: they represent
the current that should be set in each of the compensation (shim)
coils to cancel out the magnetic perturbations originating from the
sample. In these cumbersome expressions, simplifications arise
from sample symmetry: the presence of the scalar product f1-2
ensures that only the top and bottom extremities contribute to
the integral, provided the sample is aligned with the magnetic
field. Through the harmonic factor e-™%', additional symmetries
in the sample cross section result in the cancellation of many of
the coefficients, as will be discussed in specific examples below.
The first term of the Laplace expansion is the bulk magnetic
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Fig. 1. Coordinate system used in the model. The sample tube is aligned with the
polarizing field, and centered with respect to the shim coils. In the twin tubes
configuration, the samples are offset by +1.25 mm along X.

susceptibility shift, which is not related to inhomogeneous
broadening effects; the associated coefficient Cyo is called the
shape factor [7].

2.2. Flat-bottom sample tubes

We first consider a circular tube, where the sample is enclosed
between two sections of flat glass. Although not the most common
case, it is the simplest geometry to analyze since the sample has
the shape of a straight cylinder. We neglect the effect of the glass
on the internal field, assuming that the extremities of the container
are far from the sample, and the side walls are thin and parallel to
the polarizing field. Under these assumptions, the only non-zero
coefficients are on-axis terms. Furthermore, the symmetry
between the poles eliminates all odd degrees provided the sample
is positioned at the center of the shim coils. In this case, expression
(6) takes a simpler form:

Co= J;HIO / (I4+ Du="P (wydu  if [ is even (7a)
Co=0 if Iis odd (7b)

where 2z, is the half-length, R its radius, and

oa=(1 +(R/zo)2)71/2. The integral is a dimensionless term that
depends only on the sample form factor and can be evaluated
numerically. A simpler expression may be used to evaluate end
effects in the limiting case of long samples (zo > R):

yHoR*(1+ 1)
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The numerical results are compiled in Table 1 for various sam-
ple lengths, in units of ppb/cm’. The evaluations were done with
R=0.212cm and y = —9.05 ppm for the susceptibility of water
[1]. The calculated values indicate that field distortions are notice-
able but moderate for samples of common size. However, due to
the « 1/Z, dependence, high-order impurities increase sharply
with decreasing length. At a 'H Larmor frequency of 600 MHz,
these field distortions are predicted to exceed the compensation
capacity of Agilent® shim systems for samples shorter than 2 cm.
This limit is illustrated in Fig. 2.

In practice, this geometry is found in sample-limited applica-
tions where spectroscopists use tubes made of special glass that
matches the susceptibility of the solvent. In order to mimic a long
cylinder of uniform material, the sample volume is contained
between a thick section of glass at the bottom and a plunger at
the top. If an actual susceptibility-compensated tube is used, the
pre-factor in expressions (7) and (8) is the difference in susceptibil-
ity between solvent and glass, and the values in Table 1 have to be
scaled accordingly.

2.3. Round tubes

Most high-resolution NMR experiments utilize sample tubes
with a round bottom. The solvent-to-air interface at the top, called
a meniscus, is also non-planar. In this case, the integral in expres-
sion (6) has to be evaluated on curved surfaces, but we rely on the
following simplification for the differential element:

(f-2)dS = +dxdy = +pdpdp with p =rsin0 9)

where the sign is positive for the meniscus, and negative for the
round bottom. For the top of the sample, we use the cylindrical
coordinate system and parameterize the meniscus profile with a
numerically-calculated function h(p) (see Appendix B). After
normalization of the integration variable by z, expression (6)
becomes:
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