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a b s t r a c t

Nuclear magnetic resonance (NMR) has proven of enormous value in the investigation of porous media.
Its use allows to study pore size distributions, tortuosity, and permeability as a function of the relaxation
time, diffusivity, and flow. This information plays an important role in plenty of applications, ranging
from oil industry to medical diagnosis. A complete NMR analysis involves the solution of the
Bloch–Torrey (BT) equation. However, solving this equation analytically becomes intractable for all but
the simplest geometries.
We present an efficient numerical framework for solving the complete BT equation in arbitrarily com-

plex domains. In addition to the standard BT equation, the generalised BT formulation takes into account
the flow and relaxation terms, allowing a better representation of the phenomena under scope. The
presented framework is flexible enough to deal parametrically with any order of convergence in the spa-
tial domain. The major advantage of such approach is to allow both faster computations and sensitivity
analyses over realistic geometries. Moreover, we developed a second-order implicit scheme for the
temporal discretisation with similar computational demands as the existing explicit methods. This
represents a huge step forward for obtaining reliable results with few iterations. Comparisons with
analytical solutions and real data show the flexibility and accuracy of the proposed methodology.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Nuclear magnetic resonance (NMR) is a powerful and non-
invasive technique that allows to study the translational motion
of molecules in solution, either by diffusion or fluid flow, by using
magnetic field gradient methods. The study of this motion reflects
properties of the media and its surrounding environment, making
NMR an extremely valuable methodology for probing the complex
microstructure of natural and artificial materials [1]. A complete
analysis of this phenomena involves the solution of the generalised
Bloch–Torrey (BT) equation [2,3]. This equation describes the evo-
lution of the transverse magnetisation due to diffusion and flow in
the media, spin–spin relaxation, and the gradient field encoding
scheme. The problem of solving this equation in arbitrary domains
is of primary interest when relating variations in the acquired
signals to the underlying structures.

There has been many attempts to solve the BT equation, which
can be grouped into analytical and numerical approaches. The first
group comprises solutions given by mathematical formulae relat-
ing the output signal with parameters of interest. These solutions
are obtained by proper manipulation of the mathematical expres-
sions describing the physical phenomena. Then, different forms of
the solution can be found depending on the mathematical frame-
work used and the approximations made [1,4–7]. These solutions
have been shown to be very important to study the physical basis
of experimental results (e.g. [5]), as well as to perform other math-
ematical analysis due to their parametric nature [1]. However,
since the difficulty of such manipulation increases with the
complexity of the domain, there exist solutions only for simple
geometries, as multi-layered slabs (1D), cylinders (2D), and
spheres (3D). This limits the application of these solutions to
arbitrary domains, restricting their usefulness to idealised models.
These disadvantages are addressed by numerical methods. This
group is composed by the entire family of approximations of the
true signals obtained by the application of a numerical algorithm.
Such algorithms have the advantage of being unrestricted to
simple geometries. However, they have many disadvantages when
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compared to the analytical solutions, such as their non-parametric
nature and the intrinsic approximations and errors associated with
them. Although the latter can be reduced in principle, it comes at
the expense of computational effort, which can be prohibitive.

There exist many numerical methods that have been used to
solve the BT equation explicitly, albeit none of them considers
the flow term (see Section 4). This comprises solutions obtained
by the finite difference method [8–10], the finite volume method
[11], and the finite element (FE) method [12,13]. The latter is gen-
erally preferred owing to its flexibility for spatially discretising the
domain. However, many proposed solutions based on the FE
method rely on strong assumptions (e.g. narrow pulse limit
approximation) that limit their general applicability. Recently, a
flexible FE formulation of the standard BT equation (i.e. without
flow and transverse relaxation terms) has been proposed [14].
There, the authors present a FE approach using first-order basis
functions in space and an explicit second-order approximation in
time, which does not make such constraining approximations. To
the best of our knowledge, this latter paper by Nguyen et al. [14]
is the first to do so. Even though their approach allows to consider
arbitrary geometries inside the volume of interest, it still has
limitations in the way the meshes have to be generated, imposing
a hard constraint as the symmetry of the nodal positions on the
outermost faces. This adds an extra difficulty for building and
testing ad hoc models.

In this paper, we present a numerical FE framework for the
solution of the complete BT equation in arbitrarily complex
domains. We extend the formulation given in [14] by considering
the flow and relaxation terms, allowing a better representation of
the phenomena under scope. We obtain parametric expressions
of the corresponding matrices considering basis functions of
arbitrary order. This means that we derive closed-form formulas
for all the matrices involved in the numerical algorithm, relating
explicitly the output (i.e. the resulting NMR signal) as a function
of input parameters defining the particular scenario to be
tested (as diffusivities and permeabilities). These expressions are
specially useful when performing sensitivity analyses of the acqui-
sitions to a specific parameter, as well as to speed-up the compu-
tations [24]. Also, we broaden the formulation to deal with both
linear and parabolic spatial profiles of the magnetic field [1].
Finally, we present a second order implicit method for the tempo-
ral discretisation. Unlike explicit schemes, implicit methods are
unconditionally stable no matter the time-step selected [26]. This
is crucial for achieving reliable solutions with a minimum number
of iterations. We introduce an implicit scheme to solve the BT
equation with similar computational load as the explicit method
used in [14], which makes it highly competitive in the field. The
presented framework is built on the basis of arbitrary discretisa-
tions without imposing special constraints to the geometrical
meshes to be used.

The paper is organised as follows. In Section 2 we present the
mathematical basis of the problem and the corresponding FE solu-
tion. First, we review the differential formulation in Section 2.1.
Then, in Section 2.2, we present the variational formulation and
the FE spatial discretisation. In Section 2.3 we define the volume
and area coordinate systems, which have a key role in the paramet-
ric formulation detailed in Section 2.4. The temporal discretisation
of the BT equation is described in Section 2.5. In Section 3 we show
the capabilities of the numerical framework and compare them
with analytical solutions and real data. Finally, in Section 4, we
discuss the results, limitations of the approach, and further work.

Notation: In the following, we denote vectors with boldface
lower case letters and matrices with boldface capital letters. We
use vecð�Þ to refer to the operator that, given a matrix, returns a
vector with the matrix elements stacked columnwise, taking the
columns in order from first to last. We express the Kronecker

matrix product by �, and the nth Kronecker product of Awith itself
by A�n. Finally, we denote the n� n identity matrix as In, and the
m� n matrix full of ones as 1m;n.

2. Methods

The generalised BT equation represents the evolution of the
magnetisation as a function of the spatial location and time in
the absence of the RF field. Basically, it relates the evolution of
the complex-valued transverse magnetisation with four mecha-
nisms: diffusive migration of the spin-bearing particles, magnetic
field encoding, transverse spin–spin relaxation, and flow [1,2].
The problem statement is completed after selecting the corre-
sponding boundary and initial conditions. These conditions allow
to represent arbitrary situations where to study the phenomena.
Once the solution is found, it is used to describe the macroscopic
signal formed by the spin ensemble.

As mentioned in Section 1, solving the BT equation analytically
becomes intractable for all but the simplest geometries. In this
section, we describe the numerical framework used to solve the
aforementioned equation in arbitrary geometries and conditions.
The advantages of the formulation are explained in detail.

2.1. Differential formulation

Let X be the domain under analysis, which can be split into L

subdomains, such that X ¼ SL
l¼1Xl. Also, let Ce

l be the external
boundary of Xl, and Cln the boundary between Xl and Xn. Then,
under generally valid assumptions (such as considering normal
or Fickian diffusion, intermediate layers infinitely thin, incom-
pressible flow, and absence of susceptibility effects and hardware
imperfections; see [2,6] for a detailed discussion), the evolution
of the complex transverse magnetisation mlðr; tÞ in the rotating
frame is described by [2,15]

@mlðr; tÞ
@t

¼ r � DlðrÞrmlðr; tÞð Þ � icBðr; tÞmlðr; tÞ � 1
Tl
mlðr; tÞ

� vðr; tÞ � rmlðr; tÞ ðr 2 XlÞ; ð1Þ

subject to the boundary conditions (BCs)

DlðrÞrmlðr; tÞ � nlðrÞ ¼ jln mnðr; tÞ �mlðr; tÞð Þ ðr 2 Cln; 8nÞ; ð2aÞ
DlðrÞrmlðr; tÞ � nlðrÞ ¼ �je

l mlðr; tÞ ðr 2 Ce
l Þ; ð2bÞ

and the initial condition (IC)

mlðr;0Þ ¼ qlðrÞ; ðr 2 XlÞ; ð3Þ
where t 2 ½0; TE� with TE echo time, c is the gyromagnetic ratio of
protons (2:675� 108 rad T�1 s�1 for 1H), DlðrÞ is the diffusion
(rank-2) tensor, Tl is the spin–spin relaxation time, vðr; tÞ is the
velocity field of the spins due to flow of the medium, nlðrÞ is the
unitary outward pointing normal to Xl; jln (je

l ) is the permeability
constant in Cln (Ce

l ), and Bðr; tÞ is the effective magnetic field. In the
following analysis we considered Tl constant in each subdomain Xl

and the same permeability in both directions of the same mem-
brane, i.e. jln ¼ jnl.

Eq. (1) states that the transverse magnetisation evolves due to
diffusion (first term), encoded through the applied magnetic field
(second term), bulk relaxation (third term), and flow (last term).
The BC (2a) accounts for the creation of the diffusive flux by the
drop in magnetisation between layers. It can be seen that it also
accounts for the conservation of the magnetisation flux between
adjacent layers, i.e.

DlðrÞrmlðr; tÞ � nlðrÞ ¼ �DnðrÞrmnðr; tÞ � nnðrÞ ðr 2 ClnÞ:
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