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a b s t r a c t

Nonuniform sampling (NUS) in multidimensional NMR permits the exploration of higher dimensional
experiments and longer evolution times than the Nyquist Theorem practically allows for uniformly
sampled experiments. However, the spectra of NUS data include sampling-induced artifacts and may
be subject to distortions imposed by sparse data reconstruction techniques, issues not encountered with
the discrete Fourier transform (DFT) applied to uniformly sampled data. The characterization of these
NUS-induced artifacts allows for more informed sample schedule design and improved spectral quality.
The DFT–Convolution Theorem, via the point-spread function (PSF) for a given sampling scheme, provides
a useful framework for exploring the nature of NUS sampling artifacts. In this work, we analyze the PSFs
for a set of specially constructed NUS schemes to quantify the interplay between randomization and
dimensionality for reducing artifacts relative to uniformly undersampled controls. In particular, we find
a synergistic relationship between the indirect time dimensions and the ‘‘quadrature phase dimension’’
(i.e. the hypercomplex components collected for quadrature detection). The quadrature phase dimension
provides additional degrees of freedom that enable partial-component NUS (collecting a subset
of quadrature components) to further reduce sampling-induced aliases relative to traditional full-
component NUS (collecting all quadrature components). The efficacy of artifact reduction is exponentially
related to the dimensionality of the sample space. Our results quantify the utility of partial-component
NUS as an additional means for introducing decoherence into sampling schemes and reducing sampling
artifacts in high dimensional experiments.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Nonuniform sampling (NUS) methods, and associated spectral
reconstruction techniques, are increasingly used to reduce sam-
pling requirements in multidimensional NMR. In seminal work
by Barna and colleagues, data from two-dimensional NMR experi-
ments collected using an exponentially biased selection of t1 values
from a Cartesian grid spaced at the Nyquist interval [1], were pro-
cessed with maximum entropy reconstruction [2,3] to compute the
spectrum. Off-grid NUS methods employing sampling along radial
vectors in the indirect time dimensions were introduced in the
2000s by Ding and Gronenborn [4–6]. Spectral estimation methods
such as back-projection reconstruction [7,8] and the G-matrix
Fourier transform [6,9], were introduced to handle off-grid radial
sampling. Because they utilize different spectral reconstruction
techniques, the connection between the on-grid approach of

Barna et al. and the off-grid radial sampling approaches was not
immediately recognized. However, Mobli et al. [10] demonstrated
the close connection by using maximum entropy reconstruction
for radial sampling schemes that fall on a Cartesian grid.

The principle applications of NUS to date have been to obtain
high resolution spectra while minimizing experiment time (see
[11,12] for review). The omission of points from a uniform sam-
pling grid results in gaps which, according to the Nyquist theorem,
introduce aliased peaks that appear as artifacts in the final spec-
trum. From the earliest work by Barna et al., it has been clear that
the distribution of sample times influences the distribution and
magnitude of sampling artifacts. Understanding these artifacts is
an important first step for improving the quality of spectra
obtained from NUS experiments. Critical comparison of different
sampling strategies is complicated by the non-linearity of most
non-Fourier methods of spectral reconstruction. Nevertheless, a
growing body of empirical evidence, coupled with theoretical
insights, has yielded two fundamental principles for the design of
efficient sampling schemes. The first is that randomness is
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important for minimizing sampling artifacts [13–16]. The second is
that tailoring the sampling distribution to capture more samples at
times when the signal envelope is larger and less samples when it
is smaller helps improve sensitivity [1,17]. Beyond these general
principles, more specific prescriptions have remained elusive
because the quality of spectra obtained using NUS depends not
only on the chosen NUS schedule, but also on the nature of the
signals (e.g. noise level, dynamic range and signal decay rates),
the dimensionality of the experiment and the method used to
reconstruct the spectrum.

The point-spread function (PSF) is the discrete Fourier trans-
form (DFT) of the sampling function, which is a multidimensional
array with an element equal to one for each free induction decay
(FID) that is sampled and equal to zero for each FID that is not sam-
pled. Schmieder et al. [18] used the PSF as a quantitative tool for
comparing sampling schemes, and despite the observation by
Lustig et al. [19] that the PSF is a ‘‘natural tool to measure incoher-
ence’’ of sampling schemes, the PSF has only served a minor sup-
porting role in the investigations of NUS [20–22]. In the present
work we utilize the peak-to-sidelobe ratio (PSR, an adapted form
of the sidelobe-to-peak ratio of Lustig et al. [19]) which is the ratio
between the magnitude of the zero-frequency component and the
largest satellite (non-zero-frequency component) in the PSF. The
PSR serves as a quantitative measure of the coherence among the
sampled times in the sampling function. As such, PSR is an a priori
measure akin to ‘‘signal-to-noise’’, in that it gives the upper bound
on the ratio between the zero-frequency component and the lar-
gest NUS induced artifact expected for a given sampling function.
The artifacts follow the upper bound when the NUS data is zero-
augmented (i.e. FIDs not collected by the NUS schedule are zero
filled) and processed by DFT, whereas the artifacts are reduced
when spectral reconstruction methods make no assumptions
about the missing FIDs (e.g. maximum entropy [23,24].

We present a PSR analysis of several carefully constructed sam-
pling schemes designed to elucidate the role of dimensionality and
randomization in NUS. These schemes introduce randomization
along time and/or quadrature phase dimensions. The sampling
schemes developed here are not intended for use in NMR experi-
ments, but they do provide a useful perspective on the importance
of decoherence and its relation to dimensionality. Our results
reveal the utility of quadrature phase as an additional degree of
freedom, through which randomization can further reduce
coherence in NUS schemes and thereby reduce sampling artifacts
relative to schedules which do not sample the quadrature phase.

2. Theory

Spectra for NUS data collected on a Cartesian grid spaced at the
Nyquist interval are typically estimated using non-Fourier meth-
ods that suppress sampling artifacts relative to Fourier methods
applied to zero-augmented data. The ability of these methods to
suppress artifacts is subject to limitations, principally because of
experiment noise. However, the DFT of NUS data (where zeros
are used to augment the samples missing from the uniform grid)
is a convenient tool for characterizing the relative performance
of different sampling schemes because of its particularly simple
relationship to the spectrum obtained by DFT of uniformly sam-
pled data. The DFT–Convolution Theorem states that the DFT of
zero-augmented NUS data is given by the convolution of the PSF
with the DFT spectrum of the corresponding uniformly sampled
data set.

Quadrature detection typically used to determine the sign of
spectral frequencies requires separate, sequential experiments
when used along indirect time dimensions (as opposed to the
direct acquisition dimension, where in-phase and out-of-phase

detection can be performed simultaneously) [25]. The majority of

NUS schemes used to date collect all 2d quadrature components
for each sampled time point for quadrature detection conducted
along d indirect dimensions. We recently described random phase
detection (RPD, [26]), in which only a single quadrature compo-

nent is randomly selected for detection from among the 2d quadra-

ture components, enabling a factor of 2d reduction in the number
of FIDs collected per time index, relative to conventional quadra-
ture detection. RPD is one example of partial-component NUS,

which as a class, includes any scheme that detects less than 2d

quadrature components for a sampled time point. Full-component

NUS collects all 2d components for each sampled time.
Partial-component NUS makes the relationship between the

DFT of the zero-augmented NUS data and the PSF more compli-
cated. The DFT–Convolution Theorem no longer applies, and there
is no longer a single-valued sampling function from which the PSF
can be computed. Instead there are separate sampling functions for
each quadrature component of the hypercomplex data. As shown
in our previous work [27], the DFT spectrum of zero-augmented
partial-component NUS data is given by a linear combination of
convolutions, one for each of the sampling functions; a
corresponding partial-component PSF may be computed as the
aggregate power of the PSFs for the individual sampling functions.
In our notation for partial-component NUS, the entries in a
d-dimensional partial-component sampling function (for a
ðdþ 1Þ-dimensional experiment) are defined by

S½k1; . . . ; kd�f/g ð1Þ

where ki 2 f1; . . . ;mig is the index along indirect dimension i up to a
maximum increment of mi and / is the hypercomplex component

taken from Pd, which is the set of all 2d hypercomplex components
on d-dimensions. With the real and imaginary components along
each dimension referred to as ‘‘R’’ and ‘‘I’’, respectively, we have, for
example, P2 = f‘‘RR’’, ‘‘RI’’, ‘‘IR’’, ‘‘II’’g. The ki values index along the
indirect time dimensions and the / value indexes along the ‘‘quadra-
ture phase dimension’’. Entries in S with a value of 1 indicate FIDs that
are collected and values of 0 indicate FIDs that are not. Sample cover-
age (c) is the percentage of FIDs from a uniform sampling grid that are
collected by a sample function and is computed as

c ¼
P

k1 ;...;kd ;/
S½k1; . . . ; kd�f/g

2d � ðm1 � � �mdÞ
ð2Þ

If a desired sample coverage equates to a non-integer number of
FIDs, the number of FIDs collected is rounded up.

3. Methods

Three types of NUS schemes are considered here: random sam-
pling (R), constant-offset undersampling (U) and random-offset

undersampling (eU). Each of these types is deployed as either full-
component (‘‘F’’ subscript) or partial-component (‘‘P’’ subscript).
The random sample schedules (RF and RP) are generated by the
random selection of sample points across the uniform sample grid.

The constant-offset (UF and UP) and random-offset (eUF and eUP)
undersampling schedules are constructed as hypercomplex
ðd� 1Þ-dimensional arrays containing copies of a uniformly under-
sampled 1D vector, each placed with an index offset along the first
indirect dimension; these schedules are collectively referred to as
1D-generated (1DG). With respect to the notation established in
Eq. (1), the index along each 1D vector is given by the time index
½k1� and the location of each 1D vector within the hypercomplex
ðd� 1Þ-dimensional array is given by the remaining time indices
½k2; . . . ; kd� along with the ‘‘quadrature phase index’’ f/g.
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