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a b s t r a c t

In electron spin resonance spectroscopy, spectral lineshapes are often assumed to be Voigtian. A number
of researchers have suggested ways to approximate the Voigtian profile. Herein, we have devised a new
quasi-analytical method to deconvolve it. In particular, we have derived an equation that relates the
Lorentzian-to-Gaussian linewidth ratio directly to the product of the linewidth and the maximum value
of a normalized Voigtian profile. Our calculations show that the Lorentzian and Gaussian linewidths
obtained by the quasi-analytical deconvolution of computer-generated Voigtian absorption spectra are
accurate within an error range of 1% in the absence of noise. Also, simulations with noise-added spectra
reveal that, in the presence of white noise, our method is valid to a certain extent that depends on several
factors such as the number of data points and the spectral sweep width. The new deconvolution method
is valuable in that it estimates the Lorentzian and Gaussian linewidth in a rapid manner. The method may
be also useful in other fields of science, such as optical spectroscopy, especially if some a priori knowledge
about the lineshape is given.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Electron spin resonance (ESR) spectroscopy is one of the most
common methods used for the detection of chemical species with
unpaired electron(s). In general, the lineshape of an experimental
ESR spectrum obtained at room temperature is fit by a Voigtian
profile, the convolution of a Lorentzian profile and a Gaussian pro-
file, representing homogenous and inhomogeneous broadening,
respectively [1]. If the lineshape is almost exclusively Lorentzian
or Gaussian, the use of the apparent peak-to-peak linewidth,
Wp�p, of the first derivative spectrum is common, as Wp�p is con-
vertible to the full-width at half-maximum (FWHM) or half-width
at half-maximum (HWHM) of the absorption spectrum by multi-
plication with a known constant. However, if both Lorentzian
and Gaussian component of the spectrum are significant, the mere
measurement of the peak-to-peak linewidth is inadequate to
describe the lineshape, and the exact values of the Lorenzian and
Gaussian linewidth cannot be directly measured from the experi-
mental ESR spectrum.

Thus, it is desirable that the two components in the Voigtian
profile be separately considered. The best approach would be to

deconvolve the Voigtian line into the Lorentzian and Gaussian com-
ponent. Unfortunately, the deconvolution is often arduous because
a Voigtian profile cannot be expressed in a closed form [2]. To
reduce the computation time, some researchers have approximated
a Voigtian line as a simpler expression such as a finite sum of ele-
mentary functions [3–9]. In particular, Halpern et al. [9] have com-
bined the approximation strategy with the Levenberg–Marquardt
optimization algorithm [10] to fit inhomogeneously broadened
ESR spectra with a dispersive component due to the microwave
phase shift. Alternatively, Smirnov and Belford [11] have used a fast
Fourier-transform algorithm to extract information about individ-
ual lineshapes from Voigtian lines containing a dispersive
component.

Also, Bales [12,13] has introduced an interesting apporoach
where the linewidth and the intensity of a first derivative ESR spec-
trum are analyzed to deconvolve a Voigtian profile. Furthermore, in
other fields, efforts have been recently made to develop a clearer
way of deconvolution [14–16].

Herein, we introduce a new approach to the deconvolution of
Voigtian profiles. We calculate the Lorentzian and Gaussian HWHM
linewidths of computer-generated Voigtian profiles by employing a
quasi-analytical method that exploits the empirical approximation
of the Voigtian profile developed by Olivero and Longbothum [17].
The key feature of our method lies in the calculation of the Lorentz-
ian-to-Gaussian linewidth ratio using an analytical expression that
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contains the product of the linewidth and the maximum intensity,
both of which can be measured from a normalized absorption
spectrum.

2. Theory

2.1. ESR spectral lineshape

It is known that experimentally obtained ESR spectra are not
always satisfactorily described by the Lorentzian function and/or
the Gaussian function. The ESR lineshape is dependent upon tem-
perature, spin exchange, the modulation amplitude and modula-
tion frequency, and the type of the paramagnetic species
[18–21]. Other lineshape functions, such as the Lévy distribution
and the Tsallis distribution, have been suggested as alternatives
[22,23]. Nevertheless, in a number of cases, ESR spectra obtained
at room temperature are considered to contain both Lorentzian
and Gaussian component due to homogeneous and inhomoge-
neous broadening, respectively. The linewidth of the Lorentzian
component is inversely proportional to the spin–spin relaxation
time, T2, which is the reciprocal of the spin–spin relaxation rate,
R2, [24–27]. On the other hand, the linewidth of the Gaussian com-
ponent is determined by several factors including magnetic field
inhomogeneity and unresolved isotropic hyperfine lines [28].

2.2. Definition of Lorentzian, Gaussian, and Voigtian linewidth and
their relationship with one another

When a pure absorption spectrum obtained in a Fourier-trans-
form (FT)-ESR experiment is fit with a function, the FWHM or
HWHM is normally employed as the linewidth parameter. In con-
tinuous wave (CW)-ESR spectroscopy, where the first derivative of
an absorption spectrum is experimentally obtained, a common def-
inition of the spectral linewidth is the peak-to-peak linewidth
Wp�p, the distance between the two magnetic fields, at one of
which the intensity is a maximum whilst at the other it reaches
a minimum. If the lineshape is Lorentzian, FWHM in the corre-
sponding absorption spectrum is equal to

ffiffiffi
3
p

Wp�p. For a pure

Gaussian line profile, FWHM corresponds to
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

Wp�p. Also, it
is obvious that the ratio of FWHM or HWHM to Wp�p for a Voigtian
profile increases as the Lorentzian component becomes more sig-
nificant. Therefore, a change in Wp�p does not necessarily mean a
proportional change in FWHM or HWHM. Hereafter, the linewidth
is represented by the HWHM for the sake of simplicity and unifor-
mity, if not otherwise stated.

As a Voigtian profile is the convolution of a Lorentzian profile
with a Gaussian profile, the linewidth of the Voigtian profile is
related to its component Lorentzian and Gaussian linewidth. It is
known that the HWHM of a Voigtian profile is approximated,
within an error of less than 0.02%, to be [17]

CV � aCL þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bC2

L þ C2
G

q
; ð1Þ

where CV; CL, and CG are the HWHM of a Voigtian profile and its
component Lorentzian and Gaussian profile, respectively, and a
and b are 0.5346 and 0.2166, respectively. In CW-ESR, the Voigtian
linewidth CV may be obtained from the integral of the first deriva-
tive spectrum, and CL and CG are related to each other by Eq. (1).

Given that CV is known, the ratio of CL to CG or its reciprocal is
often used to describe the lineshape of a Voigtian profile. Then, one
can surmise that, conversely, the ratio CL=CG of a given Voigtian
profile may be estimated by the analysis of the lineshape. We have
found that, in order to obtain an equation for the ratio CL=CG,
one can consider the maximum value of the Voigtian profile. As the
y-axis of an ESR spectrum is essentially in arbitrary units, the

normalized Lorentzian, Gaussian, and Voigtian profile, whose inte-
gral over all real numbers is unity, can be used for the sake of sim-
plicity without losing generality.

2.3. Deconvolution of the Voigtian profile using the maximum value of
the normalized function

If an absorption spectrum as a function of magnetic field is a
pure Lorentzian, which can be thought of as a special case of the
Voigtian profile, the normalized version is given by

f LðBd; CLÞ ¼
CL

pðC2
L þ B2

d Þ
; ð2Þ

where Bd is the magnetic field offset. The maximum, which occurs
at the zero magnetic field offset, is given by

f L;max ¼
1

pCL
: ð3Þ

For a pure Gaussian profile, on the other hand, the normalized
function and the maximum value are given by

f GðBd; CGÞ ¼
ffiffiffiffiffiffiffiffi
ln 2
p
ffiffiffiffi
p
p

CG
exp � ln 2

Bd

CG
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" #

; ð4Þ

f G;max ¼
ffiffiffiffiffiffiffiffi
ln 2
p
ffiffiffiffi
p
p

CG
; ð5Þ

where ln denotes the natural logarithm. It is evident from Eqs. (3)
and (5) that the maximum value is inversely proportional to the
linewidth and greater in the Gaussian profile than in the Lorentzian
profile with the same HWHM. Unsurprisingly, the maximum value
of the Voigtian profile is a function of the linewidths of the
Lorentzian and Gaussian component.

In general, the normalized Voigtian lineshape is given by

f VðBd; CL;CGÞ ¼ f LðBd; CLÞ � f GðBd; CGÞ; ð6Þ

where the asterisk sign denotes the mathematical convolution.
Using the complex error function, also known as the Faddeeva
function, one can rewrite Eq. (6) in a more explicit form, which is
[29–31]

f VðBd; CL;CGÞ ¼
ffiffiffiffiffiffiffiffi
ln 2
p
ffiffiffiffi
p
p
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CG
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; ð7Þ

where Re denotes the real part of the complex function, and erfc
denotes the complementary error function. The maximum, which
also occurs at the zero magnetic field offset, is given by

f V;max ¼
ffiffiffiffiffiffiffiffi
ln 2
p
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Indeed, Eq. (8) is a generalized form of Eq. (5) as the right hand sides
of the two equations are identical if the lineshape is purely Gauss-
ian, that is, CL ¼ 0. On the other hand, by the asymptotic expansion
of the complementary error function, Eq. (8) can be rewritten as

f V;max ¼
1

pCL

X1
n¼0

ð2n� 1Þ!! � 1
2 ln 2

� �n CG

CL

� �2n

; ð9Þ

where !! denotes the double factorial. If the lineshape is purely
Lorentzian, that is, CG ¼ 0, the right hand side of Eq. (9) is equal
to that of Eq. (3), indicating that Eq. (3) is a special case of Eq. (9).

It is clear from Eqs. (3) and (5) that the product of the linewidth
and the maximum value is constant for a specific lineshape: the
products are 1=p and

ffiffiffiffiffiffiffiffi
ln 2
p

=
ffiffiffiffi
p
p

for the Lorentzian and Gaussian
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