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a b s t r a c t

The second-order quadrupolar broadening of the central transition of nuclear probes with half-integer
spins I is demonstrated to be useful to detect ultraslow molecular motions. On the basis of density matrix
calculations explicit expressions are derived for quadrupolarly modulated sin–sin and cos–cos signals of
selectively excited nuclei with I = 3/2, 5/2, 7/2, and 9/2. These correlation functions are suitable for
implementation in two-dimensional exchange spectroscopy as well as for stimulated-echo experiments.
As an application, 17O measurements of the reorientational correlation function of water molecules in
hexagonal ice are presented.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Detection of molecular and ionic motions in the milliseconds to
seconds range is often accomplished using two-dimensional
exchange spectroscopy and stimulated-echo time-domain tech-
niques. These methods are applicable to spin-1/2 nuclei that allow
for an excitation of their entire NMR spectra which are typically
broadened by chemical shift interactions. If the broadening is
predominantly quadrupolar in nature, there are only a few but very
important nuclear probes such as deuterons 2H [1] and the lithium
isotope 6Li [2] with spin I ¼ 1 as well as the spin-3/2 species 7Li [3]
and 9Be [4] that are typically suitable for the direct detection of
ultra-slow motions. For 6Li it is often possible to spin out the aniso-
tropic part of the interactions so that an exchange spectroscopy
based on isotropic shifts can be implemented [5–7]. Under favor-
able circumstances this type of spectroscopy can be implemented
for other nuclei as well [8,9].

Like for 2H, the spectral width of the spin-3/2 probes 7Li and 9Be
is governed by the first-order quadrupolar interaction which does
usually not exceed a few 100 kHz. Such lines thus can be excited
non-selectively by suitable radio-frequency irradiation. But for
most quadrupolar nuclei with half-integer spin, e.g., 23Na
(I ¼ 3=2) and 17O (I ¼ 5=2) representing important examples, the
spectra are typically several MHz broad. Hence, only the region of
the central transition, which in powder samples then is broadened
by second-order quadrupolar effects, is easily amenable to radio-
frequency excitation.

The tensor algebra on which multidimensional spectroscopy
relies is fully worked out for spin-1 [10–12] and spin-3/2 nuclei
[4,13,14] for which consideration of the first-order quadrupolar
broadening is usually sufficient. However, a theoretical treatment
for second-order quadrupolar perturbation based multidimen-
sional exchange spectroscopy at high field is not available, so far.

In the present work, we develop the conceptual basis for such a
technique focusing on the excitation of and detection in the cen-
tral-line transition region of half-integer quadrupolar spins in non-
rotating solids. In addition to our theoretical treatment we also
provide 17O stimulated-echo experiments on hexagonal ice as an
example to demonstrate the feasibility of our approach. The time
scales accessible with the present technique generally range from
sub-milliseconds to the limit set by the longitudinal relaxation
which in solids is often beyond seconds. This kind of stimulated-
echo measurements can thus complement analyses of central tran-
sition line shapes that are broadened by second-order quadrupolar
interactions [15–20].

2. Theory

Most of our calculations will be in terms of normalized
irreducible spherical tensor operators Tlm with rank l and order m
which are related to the standard irreducible spherical tensor
operators bT lm ¼ k�1

l;I Tlm [21] using the normalization factors [22]

kl;I ¼
ð2lþ 1Þ2lð2lÞ!ð2I � lÞ!
ðl!Þ2ð2I þ lþ 1Þ!
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If convenient we use the operators TðaÞlm ¼ ðTlm � Tl�mÞ=
ffiffiffi
2
p

where a
denotes symmetric (s) or anti- symmetric (a) combinations. All
calculations will be performed in the rotating frame. In the present
treatment spin relaxation is not taken into account.

2.1. Quadrupolar interactions

The secular part of the first-order quadrupolar interaction for a
given spin I can be written as [1]

Hð1ÞQ ¼ x20T20 ¼ x20
k2;Iffiffiffi

6
p 3I2

z � IðI þ 1Þ
h i

; ð2Þ

with T20 as defined in Eq. (2) and the quadrupolar precession
frequency

x20 ¼
ffiffiffi
3
2

r
XQ

k2;I

1
2
ð3 cos2 h� 1� g sin2 h cos 2/Þ: ð3Þ

For the coupling frequency XQ different definitions exist in the lit-
erature [23,24]. Here the definition XQ ¼ 2pCQ=½2Ið2I � 1Þ� in units
of rad/s is adopted [24]. The use of normalized spherical tensor
operators requires to keep the normalization factor kl;I if the
standard definition [23,25] of the quadrupole coupling constant
CQ ¼ e2qQ=h (in units of Hertz) is to be retained. g identifies the
asymmetry parameter. The polar angle h and the azimuthal angle
/ describe the orientation of the electrical field gradient (EFG)
tensor in the laboratory frame in the usual fashion.

In the laboratory frame the secular part of the second-order
quadrupolar interaction can be written as [26]

Hð2ÞQ ¼ x10T10 þx30T30; ð4Þ

with the precession frequencies x10 and x30 for which explicit
expressions are provided in Appendix A. Different representations
of Hð2ÞQ are given in [23,24,27–29]. The third-order quadrupolar inter-
action, Hð3ÞQ , leaves the central transition unaffected and needs not be
taken into account [30]. The second-order quadrupolar contribution
to the Zeeman spin levels mI with mI 2 I; I � 1; . . . ;�If g is [26]

xð2ÞQ ;mI
¼

X2
Q

2xL
mI 3m2

I � IðI þ 1Þ
� �

VQ
00 þ 12m2

I þ 3� 8IðI þ 1Þ
� �

VQ
20

n
þ 34m2

I þ 5� 18IðI þ 1Þ
� �

VQ
40

o
:

Here xL denotes the Larmor frequency. The parameters VQ
k0 with

k ¼ 0; 2; 4 are called new spherical harmonics and can be
calculated from [26,31]

VQ
k0 ¼

X
n

Dk
n0ðh;/; cÞAkn: ð5Þ

The Wigner rotation matrix elements Dk
n0 depend on the Euler

angles h; /, and c and on the coefficients Akn which are provided
in Appendix A.

The central transition frequency can be written as [26]

xc;I ¼ xð2ÞQ ;1=2 �xð2ÞQ ;�1=2

¼
X2

Q

4xL
4IðI þ 1Þ � 3½ � 1

2
VQ

00 þ 4VQ
20 þ 9VQ

40

� �
; ð6Þ

and can be described also in terms of x10 and x30 as

xc;I ¼ k1;I
1
2

����bT 10

����12
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2

����bT 10

����� 1
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þ k3;I
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2
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����12
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����bT 30

����� 1
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� �� 	
x30; ð7Þ

with the matrix elements ðm0I j bT lm j mIÞ. Exploiting the Wigner–
Eckart theorem [21], the relevant matrix elements are

� 1
2

����bT 10

����� 1
2

� �
¼ � 1

2 and � 1
2

����bT 30

����� 1
2

� �
¼ � 3

8
ffiffiffiffi
10
p ð2I þ 3Þð2I � 1Þ.

This simplifies the equation for xc;I to

xc;I ¼ k1;Ix10 �
3
4

1ffiffiffiffiffiffi
10
p ð2I þ 3Þð2I � 1Þk3;Ix30: ð8Þ

For an explicit expression of xc;I see Appendix A. For instance for
I ¼ 3=2 one gets xc;32

¼ x10 � 3x30ð Þ=
ffiffiffi
5
p

.

Using the arrow notation we define matrix elements
qlma;l0m0a0 ðx10;x30; tÞ that describe the transition

TðaÞlm 









!x10T10þx30T30ð Þt
qlma;l0m0a0 ðx10;x30; tÞTða

0 Þ
l0m0
; ð9Þ

under the action of Hð2ÞQ from a state T ðaÞlm to another state Tða
0 Þ

l0m0
. The

coherence transfer amplitudes q arising under the second-order
quadrupolar interaction, Eq. (4), can be computed in a straightfor-
ward manner and the results are shown in Table 1.

2.2. Selective excitation of the central line

For a hard pulse, i.e., when the radio-frequency xRF dominates
the internal interactions within the sample, the magnetization is
rotated by a certain flip angle

b ¼ xRFt; ð10Þ

during the pulse duration t about an axis u. The corresponding
Hamiltonian is

Hu
RF ¼ xRFIu; ð11Þ

with Iu ¼ Iy cosuþ Ix sinu. The operators Ix and Iy are related to the
spherical tensor operators through the relations Ix ¼ �k�1

1;I TðaÞ11 and
Iy ¼ ik�1

1;I TðsÞ11 .
If the quadrupolar interaction is sizeable, i.e., if XQ is not much

smaller than xRF, then it has to be considered during a finite pulse
length. In this case the Hamilton operator for a soft pulse, i.e., when
the internal interaction is comparable to or larger than xRF, can be
written as

Hu;soft
RF ¼ Hð1ÞQ þ Hu

RF ¼ x20T20 þxRFIu: ð12Þ

To obtain the matrix elements xðI;softÞ
lma;l0m0a0 ðxRF;x20; tÞ that describe

the transition

TðaÞlm 









!x20T20þxRFIxð Þt
xðI;softÞ

lma;l0m0a0 ðxRF;x20; tÞTða
0 Þ

l0m0
; ð13Þ

under a soft x-pulse from a state TðaÞlm to another state Tða
0 Þ

l0m0
one needs

to diagonalize the Hamilton operator Hx;soft
RF ¼ x20T20 þxRFIx, see,

e.g., [3,32–36]. The transition matrix elements for a soft y-pulse
can be gained from those for a soft x-pulse by simply rotating the
former about the z-axis by an angle of p=2.

If the quadrupolar precession frequency x20 of Eq. (3) fulfills the
condition x20 � xRF and if the excitation width arising from the
finite pulse duration does not exceed the strength of the internal
interactions, the system can be treated as a fictitious spin-1=2
system [23,37]. Focusing on the central line of powdered samples
[23,38], i.e., for the important case x20 � xRF, Eqs. (12) and (13)
can be replaced by a simpler description. This is because in the
limit of large XQ the selective excitation of the central line can
be described by choosing the appropriate 2� 2 submatrix out of
a suitable representation of the operators Ix and Iy. This leads one
to the definition of the central line operators Ixc and Iyc. The matrix
elements of Ixc and Iyc can be calculated according to

m0IjIxcjmI
� �

¼ m0Ij� iIycjmI
� �

¼ m0IjIxjmI
� �

for m0I;mI 2 �1=2;1=2f g
0 otherwise
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