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a b s t r a c t

Gradient and shim coils were designed using boundary element methods with convex optimisation. The
convex optimisation framework permits the prototyping of many different cost functions and constraints,
for example ‘p-norms of the current density. Several examples of gradients and shims were designed and
simulated to demonstrate this, as well as to investigate the behaviour of new cost functions. A mixture of
‘1- and ‘1-norms of the current density, when used as a regularisation term in the field synthesis
problem, was found to produce coils with bunches of equally spaced windings that do not take up all
of the available surface. This is thought to be beneficial in the design of coils that will be manufactured
from wire with a fixed cross-section.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Magnetic resonance imaging requires 3 different types of
magnetic field produced by the main magnet, gradient and radio-
frequency (RF) coils. The main magnet generates an exquisitely
homogeneous, stable and intense magnetic field usually with
superconducting wires and is designed with a great deal of
engineering knowledge and experience [1]. Radio-frequency coils
are usually simple rectangular or circular loops combined with
capacitors in circuits resonant at the Larmor frequency. Gradient
coils must produce their magnetic fields to within a few % in the
imaging region and are made from coils of copper wire at room
temperature. Gradient coils must operate safely in the audio fre-
quency range up to �20 kHz and support a maximum current of
more than 800 A with more than 2000 V potential difference across
each terminal. Shim coils are similar to gradient coils but need not
support such high current and voltages. They are used to correct
the magnetic field of the main magnet.

The design of gradient and shim coils [2] can be divided into
two types of methods, discrete wire and current density method,
each with arguments for and against their use. Discrete wire
methods model the thin wires that constitute a coil and continuous

current density methods model a coil with a surface current
density.

In discrete methods, the line-integral form of the Biot–Savart
law is used to calculate the magnetic field produced by a coil.
The position of the wires is parameterised and a cost function that
defines the ‘‘quality’’ of the coil [3,4] is usually non-linear. There-
fore, it is common and entirely appropriate to use stochastic opti-
misation techniques for global optimisation of the cost function
with discrete wire coil parameterisation [5]. It is conceptually sim-
ple to add various kinds of penalty to the cost function to yield the
most desirable design. However, a new parameterisation is
required when the coil surface is changed requiring considerable
mathematical effort for complicated surface shapes [6].

Continuous current density coil design methods [7,8] provide a
good approximation to the manufactured coil if enough wires are
used. A thin surface with a current density flowing on it can be
modelled as incompressible flow with zero divergence. The surface
integral form of the Biot–Savart law is used to calculate the
magnetic field produced by a coil. Various parameterisations of
continuous surface current density are possible that provide a sim-
ple linear relationship with the magnetic induction field. The most
versatile of these is a parameterisation in which the current carry-
ing surface is modelled as a connected ensemble of flat polygons,
known as a mesh. The current density in the surface is then a
vector field that is piecewise uniform [9]. The number of free
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parameters over which to optimise can be greatly reduced with
assumptions of symmetry [10,11]. Inversion of the Biot–Savart
law to obtain coil designs is ill-posed, but easily solved by
weighted Tikhonov regularisation with the power dissipation
[7,12] or stored energy [13] of the coil with one-step matrix inver-
sion methods.

Since the current density has zero divergence and is confined to
a surface, a potential function, the stream-function, is defined over
the surface [8]. A scalar function whose curl (about the surface
normal) yields the current density, the stream function is piece-
wise linear over a polygonal mesh [9,14]. The vertices of the mesh
possess a stream function value that is linearly interpolated over
its immediate neighbourhood of triangles. It is these stream
function values that act as free parameters of continuous current
density coil design methods. A final step in continuous current
density methods is the conversion into discrete wires by taking
level sets of the stream-function over the surface.

Cost functions involving non-quadratic functions of the free-
parameters of the coil design have been studied previously and
solved efficiently using custom gradient descent based determinis-
tic optimisation algorithms [4,15–18]. In the present paper we
introduce a convenient general formulation of the problem where
all components of the optimisation are convex. Several prototyping
tools are available for the solution of convex optimisation prob-
lems. In the present study we used cvx [19,20] and demonstrate
how new cost functions are easily prototyped. In particular, the
magnitude of the current density is a convex function of the nodal
stream function values and therefore we can minimise a convex
norm of the absolute current density. Previously the infinity norm
of the gradient magnitude was included in the optimisation to
provide coils with minimised maximum current density [15].
These coils exhibit a lower maximum temperature for a given field
gradient strength [21]. It should be noted that while it has always
been possible to add such terms to the cost function, it is only
when formulated in this way that they can be solved efficiently
and deterministically and associated in any combination.

This paper is arranged as follows: the mathematical formulation
of the convex optimisation problem is given, followed by its repre-
sentation in the parsed cvx code as written in Matlab (The Math-
works, Natick, MA, USA). The ‘1-, weighted ‘2- and ‘1-norms of
the current density were used for regularisation using triangular
and sinusoidal boundary element methods (BEMs) on arbitrary
and cylindrical surfaces, respectively. Fundamental studies (similar
to those presented in Refs. [22,21]) of the behaviour of this new
optimisation were made by trading the field accuracy for different
norms of the current density and also by mixing them in varying
amounts with fixed field accuracy. Coil patterns are shown for
0th, 1st and 2nd order solid harmonic target fields with resistance
and mixed norm minimised solutions and shielded whole-body
X-gradient coils were designed for comparison. Simulations of
the resultant novel coil designs were performed and are presented
herein with discussions of their relevance to coil construction.

2. Methods

2.1. Problem Formulation

Two types of BEM were used in this study. One with flat
triangular elements and linear shape functions to model the
stream-function of the current density [9,14,23]. The values of the
stream-function at the nodes of the mesh, w, define the coil. Meshes
were made in Blender (Blender Foundation, Amsterdam, Nether-
lands) and exported to Matlab. The second method is restricted to
a finite-length cylindrical surface on which the stream-function is
a weighted sum of truncated sinusoidal functions [10,11].

Matrix equations that transform w to the various coil properties
were constructed according to Eqs. (9)–(13) in Ref. [15] and are
summarised below.

� The z-component of the magnetic field at a series of points,

b ¼ Bw; ð1Þ

� The Cartesian or cylindrical components of the current density
in each triangle,

jx ¼ Jxw; jy ¼ Jyw; jz ¼ Jzw; ja/ ¼ Ja/w; ð2Þ

� The stored energy in the coil;

W ¼ wT Lcw; ð3Þ

� The resistive power dissipation of the coil,

P ¼ wT Rcw: ð4Þ

Previously, a weighted linear combination optimisation problem
was used with equality constraints. This is simple to solve when
each term is quadratic in w using matrix inversion (with Lagrange
multipliers for the equality constraints) [14,23]. A non-quadratic
term was introduced to minimise the maximum absolute current
density [15]. We generalise this by stating the optimisation in the
form of a convex optimisation as defined in Ref. [24]:

minimise f 0ðwÞ
subject to f iðwÞ 6 bi; i ¼ 1; . . . ;m;

ð5Þ

where the functions f0; . . . ; fm : Rn ! R are convex. Eqs. (1) and (2)
are affine. Eqs. (3) and (4) are convex if Lc and Rc are positive
semidefinite, which is the case.

Various convex cost functions and constraints were tested in
the present study using cvx; a toolbox for Matlab that parses the
optimisation problem and passes it in standard form to sdtp3
[25] to find the solution. The simplest optimisation for the coil
design problem is the Tikhonov regularised minimisation of the
root-mean-squared (RMS) residual field.

minimise kBw� btk2 þ akwk2; ð6Þ

where bt is the target field and a is the user-defined regularisation
parameter.

The ‘2-norm regularisation term, kwk2, has no practical rele-
vance. Substitution of w with an affine transformation Fw retains
convexivity. If F is the matrix obtained from Cholesky decomposi-
tion of Lc or Rc then the solution of Eq. (6) will yield, respectively,
the inductance (stored energy) or resistance (power dissipation)
minimised coil.

The minimum resistance coil design problem is written in cvx
code as.

cvx_begin
variable x(length(Rc));
minimize (norm(B � x-bt,2) + alph � quad_form

(x,Rc));
cvx_end

It should be noted that it is far simpler and quicker to solve the
specific problem described by the code above using direct matrix
inversion [9,14,23] than this convex optimisation method. In all
cases, optimisations were performed on a Mac Pro (Apple Inc.,
Cupertino, CA, USA) equipped with 2.8 GHz Intel Xeon processors
and 4 GB of RAM, using Matlab R2012a (The Mathworks, Natick,
MA, USA), CVX [24] 2.0 (beta) build 945 and sdpt3 [25] version 4.0.
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