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a b s t r a c t

The response of a magnetic resonance spin system is predicted and experimentally verified for the
particular case of a continuous wave amplitude modulated radiofrequency excitation. The experimental
results demonstrate phenomena not previously observed in magnetic resonance systems, including a
secondary resonance condition when the amplitude of the excitation equals the modulation frequency.
This secondary resonance produces a relatively large steady state magnetisation with Fourier compo-
nents at harmonics of the modulation frequency. Experiments are in excellent agreement with the
theoretical prediction derived from the Bloch equations, which provides a sound theoretical framework
for future developments in NMR spectroscopy and imaging.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Excitation of magnetic resonance systems is typically achieved
using short radiofrequency (RF) pulses with relatively high power
in the order of kilowatts. Pulsed techniques predominantly
replaced early continuous wave (CW) methods [1–3] due to their
improved sensitivity and efficiency [4]. Recently, there has been re-
newed interest in CW techniques for magnetic resonance imaging
(MRI) [5–7], largely motivated by the need to image samples with
very short relaxation times. Continuous wave alternatives to the
pulsed excitation paradigm are particularly advantageous for
MRI, as opposed to spectroscopy, since the object is relatively large
and thus high RF power is required to produce uniform flip angles
using pulsed excitation methods.

In this work we demonstrate proof-of-concept measurements
of the magnetisation during a CW excitation with an amplitude
envelope modulated by a sinusoid. We measure the steady state
magnetisation waveform and observe substantial frequency com-
ponents at harmonics of the modulation frequency. Furthermore,
we demonstrate that the steady state signal is maximum when
the amplitude of the RF field equals the modulation frequency,
establishing a secondary resonance condition that is analogous to
resonance at the Larmor frequency.

Periodic modulation in NMR has been previously considered in
numerous works. For example, Redfield observed a similar second-
ary resonance when the Rabi frequency of an RF field matched the
frequency of an external magnetic field oscillating in the direction

of the B0 field [8]. Floquet theory was applied to systems consisting
of an RF field with multiple frequencies in [9] and later generalised
to solid-state NMR of rotating samples, where secondary reso-
nances exist with respect to the sample spinning frequency, e.g.
[10–12].

To our knowledge, the work presented here is the first experi-
mental demonstration of such phenomena using an amplitude
modulated RF field and provides a magnetic analogue of work in
quantum optics. In the context of optics, Cappeller and Müller
[13] considered a two-level atom excited with a sinusoidally vary-
ing phase and demonstrated a secondary resonance condition they
termed ‘Rabi resonance’. Specifically, they showed an increase in
the atom’s response when the rate of phase change is equal to
the Rabi frequency. An amplitude modulated field was examined
in [14] where the first six subharmonics of the Rabi frequency were
observed experimentally. The second harmonic response to a
phase modulated excitation has also been used as feedback to sta-
bilise the intensity of an electromagnetic field [15,16].

The novel magnetisation behaviour we demonstrate here arises
from the nonlinear interaction of the RF field with the bulk mag-
netisation, accentuated by the use of an amplitude modulated
CW pulse. Traditionally, pulsed techniques as well as continuous
wave techniques such as stochastic MRI [5] and ‘sweep imaging
with Fourier transformation’ [7] have assumed that the spin sys-
tem can be treated in a linear time invariant framework. Indeed
a focus of early work in spectroscopy was to ensure the linearity
assumption remained valid to avoid distortion in the spectra, e.g.
[17]. Although the system is approximately linear under certain
conditions [18], it is our goal to investigate and exploit the nonlin-
ear interactions.
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The nonlinear features of the spin system are intrinsically inter-
esting in their own right although we also envisage practical appli-
cations. For example, improved isolation between the transmitted
and received signal can be achieved by transmitting at one fre-
quency and receiving at a harmonic frequency. The two signals
are separated in frequency, which allows digital or analog filters
to extract only the signal of interest. This is particularly important
in continuous wave NMR applications since the desired signal is
orders of magnitude smaller than the transmitted RF signal [7].

A theoretical analysis and averaging solution of the Bloch equa-
tions were presented for a similar excitation in [19,20]. The contri-
bution here is twofold. First, we obtain experimental magnetic
resonance data verifying the theoretical results. Secondly, we ex-
tend the analytic results to more general excitation and provide
an explicit solution in terms of Bessel functions.

2. Theory

We consider a radiofrequency field oscillating at the Larmor fre-
quency with an amplitude modulated envelope given by

xeðtÞ ¼ x1ð1þ a cosðxmtÞÞ; ð1Þ

where x1 ¼ cB1; c is the gyromagnetic ratio, B1 is the amplitude of
the RF field without modulation, a is the modulation factor and xm

is the modulation frequency. The frequencies x1 and xm defining
the signal envelope are small compared to the Larmor frequency
of the static field.

The starting point for the theoretical analysis of the response to
amplitude modulated RF is the Bloch equation in the rotating
frame of reference,
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where R1 and R2 are the relaxation rates representing spin–lattice
and spin–spin relaxation, respectively, and D is any deviation
from the Larmor frequency including inhomogenities, gradients
and off-resonant excitation. Without loss of generality, we have
assumed an equilibrium magnetisation of unity and zero RF
phase, equivalent to excitation along the x-axis in the rotating
frame.

An approximate analytical solution can be found for the case of
on-resonance excitation, D ¼ 0. First, we consider the Bloch
equation in an excitation dependent reference frame given by the
transformation,
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where

sðtÞ ¼ xmt þ a
x1

xm
sinðxmtÞ: ð4Þ

The form of sðtÞ in Eq. (4) is chosen such that
xeðtÞ � _sðtÞ ¼ x1 �xm, which removes the time dependence of
the excitation and leads to an analytical solution. Other rotating
coordinate systems have been used in previous NMR studies to
simplify mathematical analyses, e.g. [8,21,22]. The transformed
equation, derived in Appendix A, is
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where

faðtÞ ¼ �R2 cos2 sðtÞ � R1 sin2 sðtÞ ð6Þ

fbðtÞ ¼ �R1 cos2 sðtÞ � R2 sin2 sðtÞ ð7Þ

fcðtÞ ¼
R1 � R2

2
sinð2sðtÞÞ þx1 �xm ð8Þ

fdðtÞ ¼
R1 � R2

2
sinð2sðtÞÞ � ðx1 �xmÞ: ð9Þ

The Bloch equation in this reference frame, while appearing
more complicated, represents a slowly varying signal and is there-
fore amenable to periodic averaging techniques from nonlinear
systems theory [23]. This requires calculating the averages of the
sinusoid terms in Eqs. (5)–(9). As calculated in Appendix B, the
average of sin sðtÞ and sinð2sðtÞÞ are zero and the remaining
averages are
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where —— represents the average and Jk denotes the Bessel function
of the first kind of order k. The averaged equation can be written
concisely as
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where

Ra ¼ R2 cos2 sðtÞ þ R1 sin2 sðtÞ ð14Þ

Rb ¼ R1 cos2 sðtÞ þ R2 sin2 sðtÞ ð15Þ
Rc ¼ R1 cos sðtÞ: ð16Þ

The average solution in this reference frame is denoted
nðtÞ ¼ ½nxðtÞ; nyðtÞ; nzðtÞ�T and consists of a steady state compo-
nent, nss, and a transient component, nt, such that

nðtÞ ¼ nss þ ntðtÞ: ð17Þ

The steady state solution is found by assigning the lefthand side
of Eq. (13) to zero and solving the resulting linear matrix equation.
This gives
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The magnitude of nss is maximum when the RF amplitude
equals the modulation frequency, i.e. x1 ¼ xm. Furthermore, a
transformation of Eq. (18) back to the traditional rotating frame
of reference does not change the signal amplitude. Therefore, the
measured steady state response will also be maximum when
x1 ¼ xm, defining a secondary resonance condition referred to as
Rabi resonance, as has previously been demonstrated in optical
systems [14].

The transient response, ntðtÞ, is found by directly solving the
coupled differential equations in Eq. (13) with an initial magnetisa-
tion of unity along the z-axis. The three elements of nt are

nt;xðtÞ ¼ 0 ð19aÞ

nt;yðtÞ ¼
e�Rpt
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