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Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of
electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This
article studies the behavior of this system, based on the coupling between its dielectric and cavity modes.
Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this cou-
pled system. General expressions for the frequencies and field distributions are derived for both the
resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of fre-
quencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequen-
cies are studied in detail. Since the DR is situated within the cavity then the coupling between them is
strong. In some cases the coupling coefficient, x, is found to be as high as 0.4 even though the frequency
difference between the uncoupled modes is large. This is directly attributed to the strong overlap
between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise
ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromag-
netic fields are found to contain equal contributions from the fields of the two uncoupled modes. This
situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate
the results, finite element simulations are carried out. This is achieved by simulating the coupling
between a cylindrical cavity’s TEyq; and the dielectric insert’s TEy;; modes. Coupling between the modes
of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of
the coupled system are proposed. These expressions are crucial in the analysis of the probe’s
performance.
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1. Introduction model, crucial probe parameters such as frequencies, quality fac-

tors and resonator efficiencies were determined. The interaction

The coupling between a dielectric resonator (DR) and a con-
ducting cavity is of interest in electron paramagnetic resonance
(EPR) spectroscopy because of the signal to noise ratio (SNR)
enhancement of the resulting probe [1-4]. When both resonators
have the same resonance frequency, the size of the DR is much
smaller than that of the cavity. Therefore the magnetic field of
the DR is more concentrated in a much smaller spatial region. This
leads to an increase in the resonator’s filling factor [4]. Usually the
frequency of the dielectric TEy;; mode and that of the rectangular
cavity’s TE;o, mode (TEg;; mode for cylindrical cavities) are close.
Two DRs inserted in a cavity allow the user to tune the frequency
of the cavity along with enhancing the SNR [3,5,6].

The coupling between the TEq;s DR mode and the cavity’s TEgq;
mode was studied by Mett et al. [7]. They showed that the coupling
could be modeled by lumped circuit (LC) elements. Using the LC
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of the dielectric and cavity modes results in two new modes. A
symmetric (parallel) and an anti-symmetric (anti parallel) mode
[7]. The symmetric mode is the mode formed when the two elec-
tromagnetic fields add constructively in phase, while the anti-sym-
metric mode has a 180° phase shift between the two uncoupled
modes.

Using finite element simulations, the current authors showed
that the interaction between the TEy;; modes of two DRs and a
TE 0, cavity mode results in three coupled modes, where the most
appropriate mode for X-band EPR experiments was found to be the
TE™* mode [6]. This mode is the result of the in-phase coupling of
the three uncoupled ones (the two TEq;s Dielectric modes and the
TEqo2 cavity mode). In fact, it was illustrated that the fields of the
TE™* mode is the linear superposition of the three uncoupled ones
[6]. The TE*~~ mode does not have a cavity contribution. Accord-
ingly, this mode is very difficult to excite through the cavity iris.
As noted, the behavior of the coupled modes varies significantly.
Thus for EPR experiments one needs to have a comprehensive
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understanding of the modes’ characteristics, particularly their fre-
quencies and field distributions. Other field dependent parameters
are of interest as well. Accordingly, the aim of the current paper is
to thoroughly study the interaction of the modes of a single DR and
an enclosing cavity. Coupled frequencies as well as field distribu-
tions are analytically determined.

Generally, coupled mode theory (CMT) is used to analyze and
predict the behavior of a compound system by using the known
properties of its simpler components. CMT can be divided into
two main branches [8]. Space-coupled mode theory is useful in
studying the properties of transmission systems such as wave-
guides and fiber optical systems. On the other hand, temporal-cou-
pled mode theory is crucial in understanding the interaction
between multiple resonators and is therefore suitable for the cur-
rent work.

Usually CMT is applied to determine the frequencies (eigen-
values) of the coupled system. In the current manuscript, this step
is taken further by calculating the coupled fields (eigenvectors) too.
This is achieved by formulating the coupled mode equations from
the first principles, i.e. from Maxwell’s equations. By knowing the
coupled frequencies and the fields of the coupled systems, a better
understanding of probes with inserts can be achieved. Therefore, in
this article, general expressions for the eigenvalues (frequencies)
and the eigenvectors (fields) are calculated. The case when both
resonators have the same uncoupled frequency (degenerate) is
studied in detail. Other situations when the frequencies of the
two subsystems are not the same are also thoroughly investigated.
The results predicted by the coupled mode theory are compared to
those of an electromagnetic (EM) full-wave numerical finite ele-
ment simulator as well as to those found in the literature [7-9].

Section 2 defines the system and problem in a concise sense
where the notations and the electric fields are presented. The
eigenvalues and eigenvectors are derived in Section 3. This consti-
tutes the main core needed to study the coupled system. Section 4
investigates and discusses the results obtained for different cases.
The results are verified using finite element simulation. Summary
and conclusions are presented in Section 5.

2. Theoretical background

The system under consideration is shown in Fig. 1. It consists of
a DR, referred to as “1”, inserted in the center of a cylindrical cav-
ity, referred to as “2”. The holder, not shown in the figure, is of a
low loss/low permittivity material so its effect is negligible. Two
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Fig. 1. System consisting of a DR inserted in a conducting cavity. The dielectric
insert is held inside a hollow low loss/low permittivity holder (not shown).

types of DRs with vastly different dielectric constants were used.
The first, labeled type I, with &.=29.2, dy=6mm, |, =2.65mm
and f~9.7 GHz. The second labeled, type II, with & =261 d;=
1.75 mm, [; =1.75 mm and f~ 9.5 GHz. The terms d and [ are the
resonators diameter and height respectively. The cavity has an
aspect ratio of d,/l, = 1.

The two uncoupled modes of interest are the dielectric TEq;s
mode and the cavity TEg;; mode. The electric field of each mode
can be written as [10],

£y = Myt d O r<$, <y 1
o1 = 1Jq(kir) e%cos (%)e*d\l\ r <d717 7] >% (1)
and
Ep2 = My, (kar) cos (?) )
2

Here kq, k, are the dielectric and cavity radial wave numbers
respectively. The symbol g is the wave number inside the dielectric
in the z direction, M , are the fields’ amplitudes and E,; is the azi-
muthal electric field component. In deriving Eq. (1) a perfectly
magnetic waveguide was assumed [11]. In addition, k; = po1/r1,
where po; = 2.405 and is the root of the Oth order Bessel function,
Jo(x). The symbol « is the attenuation factor, in the z direction, out-
side the DR resonator.

The magnetic field, which is the primary quantity that identifies
the performance of the probe, can be determined from the electric
field using Maxwell’s equations, i.e.

1
H=—- V x E,
JW Ly

where p is the permeability of free space and w is the resonant
frequency.

3. Theory
3.1. Derivation of the frequencies and fields by CMT
Using CMT, the fields of the coupled system are expressed as

linear superposition of the uncoupled ones,
E= a1E1 + Clez7 (3)

H = bH; + b,H,, (4)
The isolated mode of the DR satisfies Maxwell’s curl equations,
V x E] = 7]’(1)] ,Llol'l]7 (5)

V x Hy = jw6Ey,

where

&réo
&1 = r
&o

It incorporates the spatial variation due to the DR. The w; symbol is
the dielectric mode angular frequency. The variables E; and H, are
the electric and magnetic fields respectively. Similarly, the cavity
mode satisfies

V x Ey = —jm, uoHy (6)

inside the dielectric material
otherwise.

and
V x Hz ijzﬁzl‘:z,

where ¢; = &g is the permittivity of free space.
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