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a b s t r a c t

The Dirac–Frenkel–Maclachlan (DFM) variation of parameters approach to approximately solving the
time dependent Schrödinger equation is used to generate free precession and echo signals from the Bloch
equations corrected for the effects of radiation damping and inhomogeneous broadening. Following a
brief description of how the DFM method can be applied to the non-linear Bloch equations, two figures
of merit designed to evaluate how a DFM optimized approximation compares with the exact solution is
provided. This framework is used to optimize and evaluate the performance of six trial functions describ-
ing inhomogeneously broadened, radiation damped free precession and echo signals. The trial functions
are then used to analyze the resolution enhancement and signal attenuation produced by pulse
sequences that suppress radiation damping.

� 2013 Published by Elsevier Inc.

1. Introduction

Radiation damping, or the interaction of a freely precessing
magnetization with itself mediated by coupling to the detection
circuit, is well known in high resolution nuclear magnetic reso-
nance (NMR) spectroscopy [1–5]. This effect is often considered a
nuisance as the symptoms of radiation damping include line
broadening in high field, high resolution spectra, radio frequency
(rf) tank circuit tuning dependent spectral artifacts, and anomalous
values for relaxation time constants [6–13]. The success of both
active [14] and passive [15] methods for the suppression of radia-
tion damping effects on free precession signals and their corre-
sponding spectra relies on the fact that analytical solutions to the
non-linear Bloch equations are available. Given the large body of
work in the NMR community in connection with radiation damp-
ing since Suryan’s initial work in 1949 [16], it is ironic that tran-
sient analytical solutions to the non-linear Bloch equations are
still only available for just three cases. These analytical solutions
correspond to a single precessing, radiation damped isochromat,
which is either alone [3,17] or damped by spin–spin relaxation
[9,18]. This work considers analytical approximations to the radia-
tion damped free precession signal in the presence of symmetric
inhomogeneous broadening. Although an analytical theorem relat-
ing the initial magnetization tip angle to the tip angle of the central
isochromatic vector of a symmetric inhomogeneous distribution

after radiation damping ceases was developed, was related to the
area of the free precession signal, and was used to predict the for-
mation of a three magnetization component spin echo, the ap-
proach was completely devoid of any dynamic information [19–
23]. Efforts to include the effects of inhomogeneous broadening
into the single isochromatic solution to the non-linear Bloch equa-
tions in a perturbative fashion are not useful. In short, time depen-
dent perturbation theory endeavors to expand the inhomogeneous
broadening into powers of the free precession time variable. The
unfortunate consequence of the expansion is an analytical approx-
imation that diverges on the pulse sequence time scale.

The Dirac, Frenkel, and Maclachlan (DFM) variation of parame-
ters approach was originally developed to provide analytical
approximations to the solution of the time dependent Schrödinger
equation appropriate for wavepackets colliding on molecular
excited state potential energy surfaces [24–28]. Combining these
results with recent work that used DFM to model the effects of
diffusion on NMR lineshapes produced by spatially non-linear
magnetic fields [29] suggests that the DFM variation of parameters
may be used to develop analytical approximations for inhomoge-
neously broadened, radiation damped free precession and echo sig-
nals. It is the realization that a symmetric, inhomogeneously
broadened NMR line shape can be described with a Gaussian distri-
bution combined with the fact that the contribution of each iso-
chromat to the distribution is identical that makes the DFM
approach mathematically tractable in this case. Specifically, expan-
sion of the magnetization inclination angle away from the +z direc-
tion and the azimuth angle in terms of powers of the rotating
frame offset frequency leads to integrals that can be solved
analytically when the inhomogeneous distribution is Gaussian.
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Propagating this mathematical reality through the DFM variation
of parameters machinery for the case of an inhomogeneously
broadened, radiation damped line shape leads to closed form,
non-divergent analytical approximations to free precession and
echo signals.

The next section describes the DFM variation of parameters as
applied to NMR problems, specifically radiation damping in an
inhomogeneously broadened system. After establishing the
framework for the calculation of the variation parameters in addi-
tion to two ways of evaluating the quality of potential trial func-
tion approximate solutions in Section 2, the ability of six trial
functions to reproduce the exact dynamics of free induction and
echo signals is considered in Section 3. Finally, the DFM based
trial functions are used to develop approximations for the
recently reported no radiation damping (NORD) pulse sequence
[15]. The analytical results are used to describe the reported
radiation damping suppression characteristics of the NORD pulse
sequence and to suggest an alternative pulse sequence that is less
hardware demanding.

2. Theory

The dynamics introduced by inhomogeneous broadening to
radiation damped free precession signals can be described by the
well-known single isochromat radiation damping problem [3,5].
In the same way that the single isochromat couples to the NMR
detection circuit to give a unique current in the rf detection coil,
and hence a reaction field, the inhomogeneous distribution g(d)
defines a set of isochromats with a rotating frame offset frequency
d that separately couple to the properly tuned and matched rf
detection coil to yield a single unique reaction field with the

Hx ¼
1

cTRM0

Z
uðd; tÞgðdÞdd ¼ huðtÞi

cTRM0
ð1Þ

and

Hy ¼
�1

cTRM0

Z
vðd; tÞgðdÞdd ¼ �hvðtÞi

cTRM0
ð2Þ

magnetic field components in the x and y direction of the rotating
frame respectively. As described in detail in Ref. [5], the transverse
field components are written in terms of the transverse time depen-
dent rotating frame isochromatic magnetizations v(d, t) and u(d, t),
the average transverse rotating frame magnetizations hv(t)i and
hu(t)i, the equilibrium magnetization M0, and the radiation damping
time constant (TR)�1 = 2pM0cQg where c is the gyromagnetic ratio,
Q is the rf tank circuit figure of merit, and g is the coil filling factor.
The offset frequency in the rotating frame introduces the
final component of the field H

!
¼ Hxîþ Hyĵþ Hzk̂ as Hz = d/c.

This rotating frame field is used in the Bloch equation
d M
!
ðd; tÞ=dt ¼ �c M

!
ðd; tÞ � H

!
to develop the isochromatic Bloch

equations

d
dt

Mzðd; tÞ ¼
hvðtÞivðd; tÞ þ huðtÞiuðd; tÞ

TRM0
ð3Þ

d
dt

vðd; tÞ ¼ � hvðtÞiMzðd; tÞ
TRM0

� duðd; tÞ ð4Þ

d
dt

uðd; tÞ ¼ � huðtÞiMzðd; tÞ
TRM0

þ dvðd; tÞ ð5Þ

that describe the radiation damping dynamics in an inhomogenoeu-
sly broadened system [5,23].

In direct analogy to Heller’s construction of a functional from
the time dependent Schrödinger equation [27,28], a similar
functional can be developed from the Bloch equations as [29]

IðtÞ ¼
R
j d

dt M
!ðd; tÞ þ cM

!ðd; tÞ � H
!j2gðdÞdd

M2
0

: ð6Þ

This form for a functional is particularly useful because the true ex-
act solution to Eqs. (3)–(5) M

!
ðd; tÞ yields I(t) = 0 while approximate

forms for the magnetization, in terms of a set of n time dependent
parameters {nn(t)} as M

!
ðd; fnnðtÞgÞ, yield values I(t) > 0. Optimal val-

ues for each of the nn(t) parameters can be obtained from Eq. (6) by
setting the total variation to zero and introducing the trial function
M
!
ðd; fnnðtÞgÞ. In this way n separate coupled equations relating the

time derivatives of each nn(t) are obtained as

@IðtÞ¼0

¼
R
ð d

dnmðtÞ
M
!ðd;fnnðtÞgÞÞ

y
� ð d

dt M
!ðd;fnnðtÞgÞþcM

!ðd;fnnðtÞgÞ� H
!ÞgðdÞdd

M2
0

:

ð7Þ

These equations can be used to generate an analytical form for each
nn(t) and thus an approximate analytical solution to Eqs. (3)–(5).

The accuracy of a given trial function M
!
ðd; fnnðtÞgÞ, the ability of

a given M
!
ðd; fnnðtÞgÞ to mimic real dynamics, or an estimate of the

similarity between M
!
ðd; fnnðtÞgÞ and the exact solution M

!
ðd; tÞ is in

principle given at each instant in time t by I(t) in Eq. (6). The value
of I(t) is identically zero for the exact solution and approaches zero
for better approximations of M

!
ðd; fnnðtÞgÞ to the exact solution.

Unfortunately I(t) in its current form delivers an array of numbers,
one value at each instant in time. These numbers are difficult to
compare in order to determine the best trial function that approx-
imates the exact solution. Realizing that this array of numbers can
be collapsed into a single number by integrating as

e1 ¼
Z T

0
IðtÞdt ð8Þ

yields the error e1 that can be tracked as a function of the variables
that describe the problem. In the case considered here these param-
eters are the radiation damping time constant, the inhomogeneous
distribution characteristics, and the pulse sequence details. The
time T in Eq. (8) is taken to be the time that the effects of radiation
damping have ceased and only free precession remains [5,19–23].

Another error e2 can be defined for a symmetric g(d). In the case
of free precession following a h1 tip angle rf pulse, the analytical
theorem [5,19–23]

jDh1jA ¼
pgð0Þ

TR
sinðh1 � jDh1jAÞ ð9Þ

describes the d = 0 central vector tip angle away from the +z direc-
tion from its initial h1 value to its final h1 � |Dh1|A value at the time
T. A similar analytical theorem [5,19–23]

jDh2jA ¼ jDh1jA þ
pgð0Þ

TR
sinðh1 þ jDh2jA � jDh1jAÞ ð10Þ

was developed for the echo signal with a h1 initial tip angle pulse
followed by a h2 = prf pulse applied to the free precession signal
at the time T. The analytical tip angles |Dh1|A and |Dh2|A are related
to the area of the rotating frame magnetization as

jDhm¼1;2jA ¼
�1

M0TR

Z T

0
hvðtÞidt; ð11Þ

an equation that can be used to develop the tip angle based on the
approximate time dependent variation of parameters result as

jDhm¼1;2jDFM ¼
�1

M0TR

Z T

0
hvðfnnðtÞÞidt: ð12Þ

Care must be taken in the use of Eqs. (11) and (12) to be certain
that the hv(t)i and hv({nn(t)})i magnetizations correspond to the
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