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We propose a new approach to stabilizing the inverse Laplace transform of a multiexponential decay sig-
nal, a classically ill-posed problem, in the context of nuclear magnetic resonance relaxometry. The
method is based on extension to a second, indirectly detected, dimension, that is, use of the established
framework of two-dimensional relaxometry, followed by projection onto the desired axis. Numerical
results for signals comprised of discrete T, and T, relaxation components and experiments performed
on agarose gel phantoms are presented. We find markedly improved accuracy, and stability with respect
to noise, as well as insensitivity to regularization in quantifying underlying relaxation components
through use of the two-dimensional as compared to the one-dimensional inverse Laplace transform. This
improvement is demonstrated separately for two different inversion algorithms, non-negative least
squares and non-linear least squares, to indicate the generalizability of this approach. These results
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may have wide applicability in approaches to the Fredholm integral equation of the first kind.
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1. Introduction

An important type of 1-dimensional NMR transverse relaxome-
try yields time-domain data of the form [1]:

y(t) = /(;OI-‘(Tz)e’[/T2 dT, (1)

describing a superposition of signals relaxing independently, with
F(T,) the weight of the component with decay constant T,. Data
would typically be acquired by sampling the echo maxima of a
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. Eq. (1) has
the form of a Laplace transform, and extraction of F(T,) via the in-
verse Laplace transform (ILT) is a classically ill-posed problem
[2,3]. We demonstrate that the recovery of F(T,) from y(t) is stabi-
lized when a second, indirect, dimension, is introduced. We show
this in the context of NMR experiments, in which two-dimensional
relaxometry and related experiments are already well-established.

Ill-posedness renders the result of the ILT highly sensitive to
noise and of potentially limited accuracy. Regularization reduces,
but does not render insignificant, these limitations [4]; in addition,
the derived F(T) is highly sensitive to the degree of regularization
[5]. Similar comments apply to other uses of the ILT to derive dis-
tributions of, for example, longitudinal relaxation time, T;, and dif-
fusion coefficient, D.
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2-Dimensional (2D) relaxometry experiments in NMR yield
time domain data of the form:

JED = / / F(Ty, Ty)e “Mie U™ dT, dT,, )
0 0

where we have used Ty, and T, as the variables in the separable
exponential kernel for illustrative purposes. This form of the T;
dependence can be achieved by subtracting the signal obtained
for a given inversion time ¢ from the signal obtained using f > T;.
Signal-to-noise ratio (SNR) for simulations and experiments was de-
fined after this subtraction.

Expressions of identical form apply to other 2-dimensional
relaxometry and hybrid experiments involving, e.g. the pairs
(T, T2), and (T, D) [1,6,7]. In each case, a pulse sequence incorpo-
rating an indirectly-detected dimension with variable evolution
time ¢, or, e.g., an incremented gradient, and a directly-acquired
dimension parameterized by time is implemented. Through
consideration of previous results on the stability of the ILT [2],
and the fact that the span of multiplicatively separable functions
mapping R? — R! is dense in the set of all such functions, we
hypothesized that the 2D ILT would display greater accuracy and
stability with respect to noise than the 1D ILT. Experiments
yielding expressions of the form of Eq. (2) could then be used to
determine F(T,) through projection of the two-dimensional ILT
onto the T, axis (Fig. 1).

The goal of the present work is to demonstrate that deriving the
1D ILT via the 2D ILT, that is, the path defined by the solid arrows in
Fig. 1, yields much-improved results as compared to the direct cal-
culation of the 1D ILT, that is, the dashed arrow path. We will refer
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Fig. 1. Dashed arrow indicates the 1D ILT of multicomponent decay data consisting
of decaying exponentials, resulting in a T, histogram. The path traversed by the
solid arrows introduces a second dimension to the data with a distinct, indirectly-
sampled time variable , representing, e.g. the inversion time in a T; measurement.
The T histogram is then obtained by applying a 2D ILT to the two-dimensional data
and then projecting the resulting T;-T, histogram onto the T, axis.

to the 2D method as 2D ILT projection (2D ILTP). Because ILT re-
sults improve with greater SNR, the comparison between the 1D
and 2D approaches must be made on an equal-time basis. In the
2D experiment, acquisition time is proportional to the number of
rows of data, m, acquired in the indirect dimension. Applying this
additional time instead to signal-averaging a 1D acquisition would
result in a v/m increase in SNR. Therefore, we compare results from
a 2D dataset with results from a 1D dataset having a factor /m
higher SNR, or, equivalently, compare 1D to 2D experiments
conducted with equal total acquisition time, where the repetition
time was set to five times the T; of the slowest decaying
component.

Simulation results, and experimental data from agarose gel
phantom samples, will be presented. Two established methods
for carrying out the ILT of a signal exhibiting multiexponential de-
cay, non-negative least squares (NNLS) and non-linear least
squares (NLLS), were investigated to determine the generalizability
of our analyses. NNLS has the significant advantage of not requiring
pre-specification of the number of underlying exponentials. In con-
trast, with NLLS, data points are fit to a pre-specified non-linear
model function, which in our case is the sum of two decaying expo-
nentials. Thus, NLLS requires a careful selection of signal model and
reasonable initial estimates for fit parameters. NNLS suffers from
much greater numerical instability and generally requires regular-
ization to achieve reliable results. In addition, the flexibility of the
NNLS approach leads to much more stringent SNR requirements
for stability and accuracy as compared to NLLS. Finally, even for
a signal generated by two discrete relaxation components, regular-
ized NNLS will return a histogram of T, values that may or may not
resolve these components. In contrast, NLLS, by definition, returns
and therefore resolves the number of components incorporated
into the model, whether or not this accurately represents the sys-
tem under study.

2. Methods

For NNLS, Eq. (1) was discretized with K—1 permissible
log-spaced values of T, and N time-domain data points

K-1

Y(tn) = Y F(Tap)e M +C, (3)
k=1

where y(t,) is the amplitude of the nth echo and Fy = F(Ty) is the
unknown T distribution to be derived in the form of K — 1 weights.
This equation is discretized with A, as the N x K matrix represent-
ing the integral equation kernel. The final column accounts for a
possible signal offset C. Thus, A, = e /T2k k <K —1, Aix =1, and
the final entry in F is Fx = C. A Tikhonov regularization term con-
trolled by the parameter ¢ was added in the usual manner [3,4],
so that the target function used for minimization with NNLS took
the form:

K 2

ZAnka - yn
k=1

N 2 K

x=Y + 1> Fe (4)
n=1 k=1

This approach was extended in the conventional fashion for the

two-dimensional relaxometry experiments defined by Eq. (2) [6].

We selected the value of u so that regularization increased the

misfit to the data

N K L2
XZ _ ZZ (Anka yn) (5)

exhibited by the unregularized version of Eq. (4), that is, omitting
the second term, by 1% [8]. Here, ¢ is the standard deviation (SD)
of the noise in the data as determined after complete signal decay.

For NLLS, a two-component signal model consistent with the
experimental data was assumed:

y(tn) — Mo(fle_tn/TZl +fze—fn/T2.2) +€ (6)

for 1D relaxometry, and

y(tmu tn) =M, (fle*fn/Tzle*Em/Tl.l +fze*fn/72.2e*fm/71.2) 1€ (7)

for 2D. Here, the f; are component fractions satisfying f; +f> =1, Ty;
and T,; are relaxation time constants, My is the signal amplitude
and e represents additive Gaussian noise.

Numerical data, including those in plots, are presented as
mean + SD, except that error bars in Fig. 4 are standard error of
the mean (SEM).

3. Simulation results

Simulation and experimental results were obtained using a va-
lue of m=6 for the number of points sampled in the indirect
dimension for the 2D analysis. This was selected based on a Cra-
mer-Rao lower bound calculation [9-11] (see supporting informa-
tion), which indicated marginal further improvement in results for
m> 6.

The sensitivity of the ILT to noise [2] is illustrated in Fig. 2.
There is clearly a large variation in the morphology of the derived
T, histogram from the 1D ILT (Fig. 2a); in fact, the two underlying
signal components are resolved in only five out of the 12 noise
realizations. Fig. 2b shows the results of the 2D analysis performed
on an equal-time basis through adjustment of SNR. Both compo-
nents are cleanly resolved for all noise realizations and component
amplitudes are much more stable than in Fig. 2a. Similar results
were obtained for the much more challenging problem of analysis
of three underlying relaxation components with relaxation times
and weights given by (T,, weight)=(7 ms, 5%), (12 ms, 5%) and
(50 ms, 90%) for 1D, and with T; values of 300 ms, 600 ms and
1500 ms incorporated for each component respectively in 2D.
Again, resolution was consistently observed using the 2D approach
but not with the 1D analysis, and quantification was much more
accurate with 2D ILTP (data not shown).

Using NNLS, we systematically investigated the reliability of 2D
ILTP for resolving two closely-spaced relaxation components with
the same signal parameters as in Fig. 2. Results for a range of SNR
values were obtained for 100 realizations of noise; components
were considered resolved if the minimum of the T, distribution ly-
ing between the components was less than 90% of the amplitude of
the smaller component. SNR values were incremented until the
two components were consistently resolved. For the 1D ILT,
SNR = 25,000 was required in order that the components were re-
solved for 90% of the noise realizations (Fig. 3a), while a much
more modest SNR~ 700 was required for the 2D approach
(Fig. 3b). For the equal time comparison, the 1D ILT with
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