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a b s t r a c t

Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time vary-
ing and spatially varying magnetic fields that must be either minimized or corrected. This problem is fur-
ther complicated when non-cylindrical insert magnets are used for specialized applications. Interruption
of the coupling between an insert coil and the MR system is typically accomplished using active magnetic
shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by
use of the boundary element method for coil design with a minimum energy constraint is presented. This
method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical pri-
mary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same
cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method
produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped
shields demonstrated very good shielding characteristics despite having a different geometry than the
primary coils.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Almost all applications in magnetic resonance require rapid
switching of magnetic gradient fields within the scanner, and
many emerging applications take advantage of rapidly switched
magnetic shim coils. Eddy currents are generated in the conducting
structures of the MR system by the use of these room temperature,
resistive, electromagnets, resulting in time varying and spatially
varying magnetic fields that must be either minimized or cor-
rected. This problem is further complicated when non-cylindrical
or asymmetrical gradient or shim insert systems are used for spe-
cialized applications [1–3]. Asymmetric coils generate more com-
plex eddy currents, which generally produce non-linear magnetic
fields within the system. Beyond effects on image quality, current
(and therefore power deposition) induced in the cold structures of
the MR system cause increased helium boil-off. Rapidly switched
electromagnets (particularly even-order zonal shim coils and sim-
ilar devices) coupling with the superconducting coils of the main
magnet may result in decreased system stability and, in the most
extreme cases, quenching of the superconducting system.

Minimization of the coupling between an insert coil (gradient or
otherwise) and the MR system is typically accomplished using

active magnetic shielding [4]. Active shielding is a technique that
makes use of a second coil, usually driven in series with the
primary coil, to cancel the field effects of the primary coil over a
desired region. The standard shielded gradient coil consists of a
cylindrical primary coil, coaxial with a shielding coil set at a larger
radius such that the net inductive coupling with the rest of the MR
system is greatly reduced. The use of non-cylindrical and asym-
metric gradients has made the design of active shielding systems
both more challenging and yet more important.

Many methods for designing shielding coils have been used in
the past. These methods can be divided into two broad categories:
analytic methods [5,6], and purely numerical methods [2,7–15].

Analytic methods solve for the continuous current density on
the shielding surface required to cancel the field over a chosen
region. These solutions commonly require the existence of a sepa-
rable solution to Greens function for the geometry in question, or
that symmetry can be exploited in some way. Because of this,
extension of these methods from geometrically simple systems
[5,16–22] to more complex surface geometries is extremely
difficult.

As they are not limited in surface geometry, numerical methods
are much more convenient for the design of novel, shielded, insert
coils. A particular numerical design method that has been extre-
mely successful is the boundary element (BE) method [2,10–15].
Advances in this method have allowed the inclusion of engineering
constraints, such as minimum wire spacing and gaps for electrical
and cooling connections, into the design process [13–15,23].
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However, arriving at optimal shielded coil designs using this tech-
nique is challenging. Depending on the sophistication and method
of parameterization, computational power, computing time, and
even convergence can be problems.

To date, there are three methods for designing shielded coils
using the BE method each with their own problems, they are: (1)
by specifying additional target points outside of the shield geome-
try to have zero field; (2) inclusion of an additional ‘‘bore’’ surface
and minimizing the field produced (in the region of interest) by
currents induced in the bore by switching of the gradient coil
[12,24]; and (3) Once again, including an additional bore surface
but now minimizing the power deposited into this surface by the
induced currents.

The first method can produce different shielded coil designs
depending on the distance of the target points to the shield surface.
The second and third methods cannot be used for retroactive shield
design and introduce an additional design parameter, which re-
sults in a drastic increase in computation time and optimization
complexity. Furthermore, depending on the field minimization
method used, the second method has the additional problem that
a large amount of current can be induced on the specified bore sur-
face (corresponding to bad shielding) but the ‘‘eddy fields’’ pro-
duced will cancel out at the region of interest, leading to a false
sense of shielding ability [24].

In this work, a new approach to designing shielded resistive
electromagnets (i.e. gradient and shim coils) using the boundary
element method is presented. This method is based upon the
assumption that the optimal shield for a given primary current
density will minimize the total energy of the primary and shield
system. The method is first presented as a means to create retroac-
tive shield designs for known primary wire patterns. Next, the
mathematics are described to incorporate the technique into the
BE method design and optimization procedure as a shielding con-
straint, allowing the shield design to be created in tandem with the
primary current density. To test performance, the shielding solu-
tion of this method is compared against an analytical method for
the case of a cylindrical gradient coil. To highlight the versatility
of the approach in design over non-traditional surface geometries,
a complex (though impractical) case of shielding a cylindrical gra-
dient coil with a rectangular box-shaped coil is shown. The result-
ing performance of the shielded gradient coils produced using the
non-traditional box shield geometry is compared to the completely
cylindrical case.

2. Methods

2.1. Boundary element method

In the boundary element method, a surface geometry must be
discretized into a finite element mesh. Next, a stream function,
and corresponding current density, is defined over the mesh sur-
face. If the stream function is represented as a piecewise linear
function over the mesh and we are using triangular mesh ele-
ments, the current density over the surface is approximated by:

wðrÞ �
XN

n¼1

InwnðrÞ ð1Þ

JðrÞ ¼ r� ½wðrÞnðrÞ� �
XN

n¼1

Inr� ½wnðrÞnðrÞ� ¼
XN

n¼1

InJnðrÞ ð2Þ

where wðrÞ is the stream function, nðrÞ is the normal of the mesh
surface, In is the weighting coefficient for the stream function at
node n of the mesh, and JnðrÞ is the current density basis function
for node n. The basis functions are described in [11] and are

composed of a sub-set of vectors, vnj, associated with each triangu-
lar element (j ¼ 1! Nn) containing node n as a vertex. vnj is equal
to the edge vector opposite node n divided by twice the elemental
area.

All coil properties that can be found using the current density
(e.g. magnetic field, power, torque) can now be described by the cur-
rent basis functions along with their weighting coefficients. In order
to design an electromagnet with this method, one must create and
minimize a functional. The functional can contain a uniformity
term, a power term, a magnetic energy term, a shielding term, tor-
que constraints, etc. A very simple minimum power functional is:

U ¼ 1
2

XK

k¼1

½BzðrkÞ � Btar
z ðrkÞ�

2 þ b
2

P ð3Þ

U ¼ 1
2

XK

k¼1

½IncnðrkÞ � Btar
z ðrkÞ�

2 þ b
2

InImRnm ð4Þ

where BzðrÞ ¼ IncnðrÞ is the z-component of the magnetic field pro-
duced by the coil (the matrix cnðrÞ is described in [11]), Btar

z ðrÞ are
the user specified magnetic field targets, P is the power deposition
in the coil, Rnm is the resistance matrix of the mesh surface, and b is
the user specified weighting coefficient between coil power and
field uniformity. Minimizing this functional with respect to In and
solving gives:

In ¼ ½cnðrÞcmðrÞ þ bRnm��1½cmðrÞBtar
z ðrÞ� ð5Þ

Which are the stream function weighting coefficients over the
surface. Design optimization is achieved by appropriately adjusting
the relative weighting values between performance parameters
(e.g. power, energy, torque, uniformity, shielding performance).

2.2. Retroactive shield design

The total current density for the primary and shield system can
be decomposed into its individual components:

JðrÞ ¼ JpðrÞ þ JsðrÞ ð6Þ

where JpðrÞ and JsðrÞ represent the primary and shielding current
densities respectively. Using the approximation of (2), the current
densities can be expressed over their respective meshes as:

JpðrÞ �
XN

n¼1

IpnJpnðrÞ ð7Þ

JsðrÞ �
XM

m¼1

IsmJsmðrÞ ð8Þ

With this current density approximation, the total magnetic
energy of the primary and shield system is:

E ¼ 1
2

IpnIpmLpnm þ
1
2

IsqIskLsqk þ IpnIskMpsnk ð9Þ

where Lnm is the self inductance matrix of the surface, described in
[11] (with subscripts ‘‘p’’ and ‘‘s’’ denoting primary and shield
respectively), and Mpsnk is the mutual inductance matrix between
the primary and shield surfaces calculated by the expression:

Mpsnk ¼
l0

4p

Z
S

Z
S0

JpnðrÞ � Jskðr10Þ
jrpn � r0skj

dS0dS ð10Þ

Now, in this instance one is interested in designing a retroactive
shield (i.e. the primary coil has already been created and the Ip val-
ues are known). Therefore, the only free variables in Eq. (9) are the
shield stream function values Is. Minimizing Eq. (9) with respect to
the shield stream function values and solving gives:
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