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a b s t r a c t

The initial part of FID-signals cannot always be acquired experimentally. This is particularly true for sig-
nals characterised by strong inhomogeneous broadening, such as those in porous materials, e.g. cements,
soils and rocks, those measured by portable NMR-apparatus, or EPR-signals. Here we report on a numer-
ical method we designed to extrapolate those initial missing parts, i.e. to retrieve their amplitude and
phase. Should the entire signal be available from an experiment, the algorithm can still be used as an
automatic phase-corrector and a low-pass filter. The method is based on the use of cardinal series, applies
to any oversampled signals and requires no prior knowledge of the system under study. We show that the
method can also be used to restore entire one-dimensional MRI-data sets from those in which less than
half of the k-space was sampled, thus not only potentially allowing to speed up data acquisition – when
extended to two or three dimensions, but also to circumvent phase-distortions usually encountered
when exploring the k-space near its origin.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In magnetic resonance spectroscopy and imaging, signals,
experimentally acquired as a function of the time, are usually Fou-
rier- or Laplace-transformed [1–5] to obtain precession or relaxa-
tion spectra, or images. Quite often, though, physically or
chemically relevant information is extracted from the signal direct
in the time domain [6–10]. Recording of the FID-signal can effec-
tively start a short while after the end of the last RF-pulse to avoid
burning the receiver by feeding into it intense RF-field generated
by the transmitter. Furthermore a few first samples of the FID-sig-
nal was sometimes found to have much lower signal-to-noise ratio
than in the rest of the signal and should be rejected [11]. This is of
rather limited importance when studying systems characterised by
slow spin–spin relaxation and uniform magnetic susceptibility
[11,12–15] and can, if necessary, easily be avoided by using more
sophisticated acquisition protocols rather than a single-pulse se-
quence [7,15]. On the contrary, this becomes a real problem when
a system with great intrinsic heterogeneity of magnetic suscepti-
bility, such as interstitial fluids in porous materials, should be stud-
ied, as then a significant part of its FID-signal turns out to be
irreversibly lost because of its fast defocusing combined with
molecular diffusion. Similar problems can arise when using mobile

NMR-spectrometers or -imagers [17–19], whose magnetic field is
rather inhomogeneous.

Depending on the system and purpose of its investigation, var-
ious approaches have been taken to process incomplete signals.
There are methods that rely on comparison of experimental signals
with those in data bases [20]. Those are of little use for processing
signals of heterogeneous systems, for which there are no data
bases. Other methods, e. g. maximum entropy [21,22], multi-way
decomposition [23,24], periodgrams [25], base cosine fitting [26]
and some others [27], are intended for calculating spectra rather
than the signal in the time domain. Signals in the time domain
can be recalculated by methods such as linear prediction [28–34]
and Lagrange interpolation [35,36]. Nevertheless linear prediction
algorithms assume that the FID-signal can be approximated by a
sum of complex exponentials and so can hardly be applicable to
the extremely narrow FID-signals of heterogeneous systems, such
as porous materials, known to have no particular shape. Moreover,
having proved themselves suitable for restoring FID-signals at long
times, both methods fail to recalculate the signals at short times
owing to their extreme sensitivity to noise [39]. Yet signals of por-
ous media are characterised by relatively low signal-to-noise ratio.
Finally, there are techniques provided by the non-uniform sam-
pling theory [37,38], which deals with the problem of reconstruc-
tion of band-limited functions from sets of their non-uniform
samples. To do so, the function is periodically copied and thus con-
structed periodic function approximated by a series of trigonomet-
ric polynomials in the least-square sense [39]. If these techniques
happened to be numerically stable enough [39,40], they could
possibly be applied to processing heterogeneously broadened
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NMR-signals. Here we report on a numerical method based on the
use of cardinal series for extrapolation of both the amplitude and
phase of the missing initial parts of such FID-signals. In the past
we already used cardinal series to design a low pass filter [41],
an algorithm to identify and remove strong sporadic noise [42]
and an interpolation technique [36] for such NMR-signals and so
could convince ourselves with their low sensitivity to noise.

2. Theory

2.1. Interpolation of echo signals

According to the sampling theorem [43–45], any band-limited
signal with a band width X0 can be expressed as an infinite cardi-
nal series:

xðtÞ ¼
Xþ1

p¼�1
apsinc

X
2
ðsp � tÞ; ð1Þ

where the cardinal sine function sinc is defined as

sincðaÞ ¼ sin a
a

; ð2Þ

the positions of the maxima of the cardinal sine functions sp’s are
regularly spaced by ds ¼ spþ1 � sp ¼ 2p=X and the band width of
the series X has to be equal to or greater than that of the signal
X0 to satisfy the Nyquist condition. Here we defined the band width
Xx so that Xx=2p corresponds to the band width in Hertz in the
common usage of NMR-spectroscopists.

Using numerical simulations [41,42], we showed that many
band-limited analogue signals within an interval ½tinf ; tsup� can be
approximated by a finite cardinal series determined within the fi-
nite interval ½tinf � 6ds; tsup þ 6ds� with a bias that does not exceed
the computer double precision round-off error:

xðtinf < t < tsupÞ �
X

tinf�6ds<sp<tsupþ6ds
apsinc

X
2
ðsp � tÞ; ð3Þ

This permits to describe the analogue signal by means of solely a fi-
nite number of coefficients ap’s. Here ap’s will usually differ from
x(tp)’s outside the interval ½tinf ; tsup�.

To reconstruct the continuous function from a finite number of
samples randomly placed in the interval ½tinf ; tsup�, these coeffi-
cients can be determined from the least-square minimisation of
the difference between samples’ values and the right hand side
of Eq. (3). Once the ap’s have been found, they can be fed back in
to Eq. (3) to calculate xðtÞ at an arbitrary moment of the time t
within ½tinf ; tsup� and thus restore the continuous signal. Should
the data set lack samples within broad intervals inside ½tinf ; tsup�,
the band width of the series X should be set as narrow as possible,
while making sure to satisfy the Nyquist criterion, to maximise
performance of the interpolation. The optimal value we found
numerically and suggest here is X ¼ 1:1X0.

We showed [36] that this can be used as an extremely accurate
interpolation method for restoration of the signal over intervals as
large as several times its Nyquist period, provided the rest of the
signal was oversampled. Moreover, when applied to noise-im-
paired samples, this reconstruction method was shown to act as
an efficient low pass filter as well [41,42]. However, this approach
failed utterly when used for extrapolation of the signal outside
½tinf ; tsup�.

The extrapolation method described below consists in using
certain symmetry of NMR-signals to generate additional samples
of it on the opposite side of the extrapolation area and thus convert
the problem of extrapolation into that of interpolation. The latter
can safely be conferred to the cardinal series. All necessary infor-
mation on the setting parameters of the cardinal series will be

given in due time. For more detail on modelling NMR-signals by
cardinal series the reader is referred to our previous works [42].

2.2. Restoration of the initial part of FID-signals

The complex band-limited FID-signal x(t) refocused at t = 0 can
be expressed in the rotating frame as a function of its, real-valued,
pure absorption spectrum ~xðxÞ

xðtÞ ¼ ei/
Z Xo

2

�Xo
2

~xðxÞeixtdx; ð4Þ

where the phase / depends on numerous factors, such as model of
the spectrometer, capacitance of the resonant circuit of the probe,
receiver gain, sweep width, phase of the reading RF-pulse and so
is usually unknown. Here we associated the genuine beginning
t = 0 of the FID-signal, as it is usually done, with the middle of the
last pulse in the pulse sequence. The spectrum ~xðxÞ will usually
be positive all over its domain of definition. However the method
proposed herein can deal with any band-limited function whatever
the sign its spectrum assumes. Let us now assume that the ana-
logue-to-digital convertor (ADC) of the spectrometer provided us
with N samples fxn ¼ xðtnÞgN

n¼1 of the FID-signal of Eq. (4) within
the interval [t1, tN], which we shall arrange in a column vector X+

of the length 2N

Xþ ¼

0
..
.

0
x1

..

.

xN

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð5Þ

where N zeros were added for convenience of writing the expres-
sions below. The strictly positive t1 corresponds to the moment
when the acquisition can actually start, which depends on the
length of what is sometimes called the spectrometer’s dead time.
Note also that the last sample xN is not necessary equal to zero, as
the acquisition may, deliberately or not, be ended prematurely.
The algorithm described below aims at reconstructing the missing
initial part of signal within the interval [0, t1].

Let us now imagine the FID-signal of Eq. (4) as a right-hand part
of an echo with its summit at t = 0. In doing so, we do not imply
that such an echo can be generated experimentally. According to
Eq. (4), the left-hand part of the echo can then be expressed as a
function of its right-hand part as

xð�tÞ ¼ e2i/xðtÞ�; ð6Þ

where the asterisk stands for the complex conjugate. The symmetry
expressed by Eq. (6) allows to construct an echo data set within the
interval [�tN, �t1] [ [t1, tN] from the FID data set of Eq. (5), which
we shall also arrange in a column vector, X, of the length 2N:

X ¼ Xþ þ e2i/X�; ð7Þ

where

X� ¼

x�N

..

.

x�1
0
..
.

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð8Þ
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