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a b s t r a c t

Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the
binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes,
relaxation times, and exchange rate constants) for the characterization of macromolecules, which are
coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating
MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix
algebra to solve the Bloch–McConnell equations without unwarranted simplifications, such as assuming
steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm
achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial inter-
polation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed
MT preparation, were performed for validation and for assessing approximations in previous modeling
approaches. In vivo experiments in the normal human brain yielded results that were consistent with
published data.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The proton signals from macromolecules or membranes
(subsequently summarized under the single term ‘macromole-
cules’) are not directly visible to magnetic resonance imaging
(MRI) because their associated transverse relaxation times are in
the order of 10 ls. It is, however, possible to generate image con-
trast based on cross-relaxation and/or chemical exchange between
macromolecules and highly mobile tissue water [1–3]. A common
strategy is to saturate the macromolecular magnetization by
off-resonance radiofrequency (RF) irradiation and to compare the
image to one obtained without saturation. A simplifying, yet often
sufficient approach to quantitative magnetization transfer imaging
(qMTI), is the binary spin-bath (BSB) model [4,5], which consists of
two proton pools: a pool ‘‘a’’ of ‘‘free’’ liquid water and a pool ‘‘b’’ of
semisolid macromolecules with restricted motion [6,7].

Generally, off-resonance irradiation can be implemented in a
continuous-wave (CW) or in a pulsed mode. The CW experiment
achieves the best separation of the effects of RF irradiation on
the two pools [8] and leads to a closed-form analytical solution
for the BSB model [7]. For human MRI, however, repetitive pulsed
off-resonance irradiation is typically necessary because only few
scanners support CW operation. In most in vivo experiments, mod-

ified gradient-recalled echo (GRE) sequences have been employed
to investigate the spin system at a periodic steady state. They con-
sist of shaped off-resonance saturation pulses (‘‘MT pulses’’) for
generating magnetization-transfer (MT) contrast, which are inter-
leaved with small-angle on-resonance excitation pulses (‘‘imaging
pulses’’) for image acquisition (e.g., [9–11]). Alternatively, transient
techniques have been suggested, which investigate the approach to
steady state after a train of equidistant MT pulses (e.g., [12,13]). A
drawback of pulsed saturation is that it results in a mathematically
more complex description, which may lead to computationally
inefficient data analysis when MT parameters have to be deter-
mined voxel-by-voxel [14].

To simplify data analysis and overcome computational limita-
tions, several approaches have been proposed. A relatively compre-
hensive one based on the Redfield-Provotorov theory was
suggested by Sled and Pike [9]. For the liquid pool, the combined
effects from MT and imaging pulses are approximated as an instan-
taneous fractional saturation in the absence of relaxation and ex-
change. For the semisolid pool, on-resonance irradiation is
ignored, and each MT pulse is approximated by a period of con-
stant–amplitude irradiation with equivalent frequency offset and
power. Yarnykh [10] derived an expression by also employing a
constant–amplitude approximation for the MT pulses and ignoring
direct saturation of the liquid pool. Ramani et al. [11] modified the
analytical CW solution by approximating pulsed off-resonance
irradiation as having the same effect as CW irradiation of
equivalent average power, which is calculated over the duty cycle
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of the MT pulse. This approach essentially ignores the pulsed fash-
ion of the saturation.

In this paper, we present an approach for estimating MT param-
eters acquired with arbitrary pulse sequences. It uses matrix alge-
bra [15], as previously employed for simulating nuclear magnetic
resonance (NMR) experiments with chemical exchange [16–18].
The algorithm achieves high accuracy by a concatenation of analyt-
ical matrix solutions to the underlying Bloch–McConnell equations
for piecewise constant RF irradiation, which allows for an exact
sampling of digitized RF pulse shapes generated on an MRI
scanner. A key feature of the implementation is a polynomial inter-
polation technique to achieve sufficient efficiency for voxel-
by-voxel MT parameter estimations. Simulations and phantom
measurements comparing CW and pulsed saturation schemes
were performed for validation and to assess approximations used
in previous modeling approaches. Application to human-brain
qMTI was used to evaluate the performance under in vivo
conditions.

2. Theory

2.1. Simplified BSB model

The Bloch equations in the rotating frame can be written in ma-
trix form as
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M = (Mx My Mz)T is the magnetization vector, M0 is the equilibrium
z-magnetization, t is time, and R1 = 1/T1, R2 = 1/T2, T1, and T2 are the
longitudinal and transverse relaxation rate constants and times,
respectively. The offset frequency is given by X = x0 �xRF, and
the x and y components (in rad/s) of the applied RF field with ampli-
tude B1 and phase / are x1x = x1 cos/ and x1y = x1 sin/ with
x1 = �cB1. x0 is the Larmor frequency, xRF is the frequency of the
RF field, and c is the magnetogyric ratio.

For the further analysis, it is beneficial to append a constant
to the magnetization vector to obtain a homogeneous form of
the Bloch equations. Following previous suggestions [16,17], we
choose a constant 1/2 because it leads to the same normalization
as used in the product operator formalism [19]. To account for
MT processes, the Bloch equations are then expanded by differ-
ential equations for first-order exchange to obtain the Bloch–
McConnell equations [4]. We restrict our analysis to the BSB
model with the two proton pools defined above. For biological
tissues, with Tb

2 � 10 ls [20], net exchange of transverse magne-
tization is commonly neglected [1,7,21] because the efficient
relaxation of the semisolid pool rapidly destroys transverse
magnetization. Transverse magnetization in the semisolid pool
produced by the RF pulses is also negligible as long as
x1 � Rb

2 [21]. Under these conditions, simplified Bloch–
McConnell equations are conveniently written in matrix form
according to
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and the dynamic matrix [22]
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R is the MT rate constant, which is defined through the pseudo-first-
order rate constants kab ¼ RMb

0 and kba ¼ RMa
0 describing the trans-

fers Ma
z ! Mb

z and Mb
z ! Ma

z , respectively [7]. The factor 2 that is
multiplied with Ra

1Ma
0 and Rb

1Mb
0 in the first column of L is required

to account for using 1/2 as the constant term in the magnetization
vector. We note that transfer of longitudinal magnetization can oc-
cur via direct chemical exchange [5] or via dipolar relaxation caused
by the nuclear Overhauser effect (NOE) [23]. Because both processes
lead to equivalent algebraic expressions [24], the MT experiment
cannot distinguish between them.

2.2. Lineshape for the semisolid pool

The simplified dynamic matrix, Eq. (3), does not consider RF
absorption by the semisolid pool b (due to ignoring Mb

xy and setting
matrix elements L5,2 and L5,3 to zero). As a correction, an absorption
lineshape is arbitrarily introduced by modifying the lower-right
element (L5,5) according to
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Rb
RF is the saturation rate constant defined through [7]:
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2
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where gb is the absorption lineshape function. It depends on the
associated transverse relaxation time of the semisold pool, which
is determined by the local microstructure [20]. A Gaussian line-
shape was found to fit experimental data well for agar gels [7],
whereas a super-Lorentzian lineshape [25] was successfully em-
ployed for modeling MT in tissues [20]. For more efficient computa-
tion, it is convenient to write these lineshape functions according to
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respectively, with only one independent variable f � XTb
2. The omit-

ted factor Tb
2 in Eqs. (6) and (7) is then considered as a scaling

parameter in Eq. (5), which is rewritten as

Rb
RF ¼ px2

1Tb
2g0bðfÞ: ð8Þ

2.3. Steady-state conditions under CW irradiation

Under conditions of CW irradiation for a sufficiently long time
sCW � Ta

1; T
b
1, a steady state establishes, and Eq. (2) reduces to a

system of linear equations. After introducing a scaling factor r,
the signal from the liquid pool is [7,11]:
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In general, Eq. (9) permits the unique determination of six model
parameters: rMa
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, and Tb

2 (from Rb
RF).
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