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a b s t r a c t

Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small
surface coil elements to larger areas via reception, the term parallel imaging now includes the use of array
coils to perform image encoding. This methodology has impacted clinical imaging to the point where
many examinations are performed with an array comprising multiple smaller surface coil elements as
the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend
towards higher channel counts relying on insights gained from modeling and experimental studies as
well as the theoretical analysis of the so-called ‘‘ultimate’’ SNR and g-factor. We also review the methods
for optimally combining array data and changes in RF methodology needed to construct massively par-
allel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with
the resulting highly parallel arrays.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The past decade of Magnetic Resonance Imaging (MRI) has seen
tremendous advances toward improved sensitivity and reduced
scan-time in clinical and research imaging examinations. While
gradient performance improvements in strength and slew-rate al-
ways played an important role in terms of acquisition speed, mag-
net field strength and well-crafted detector geometries have
always been critical for maximizing the sensitivity of the MR
experiment. Because of this important role of a coil detector in
determining sensitivity, we focus on receive arrays; although we
note that transmit arrays have recently become an object of study
in their own right [1–7].

Roemer and colleagues [8] showed that simultaneous detection
of the MR signal with an array of surface coils could out-perform a
single, larger surface coil covering the same area and gave a de-
tailed description of how to optimally combine the data from the
multiple elements given their sensitivity profile and measured
noise correlation information. They further introduced the concept
of ‘‘preamplifier decoupling’’ to suppress inductive coupling within
the array using low-input impedance preamplifiers [8]. Only a year
later, this concept was extended to volume-like acquisitions to
show that the sensitivity of the array could compete favorably with
volume coils [9]. While the spine was Roemer’s initial focus and a

logical place to distribute the reception coils along the length of the
body, the concept was quickly extended to imaging other parts of
the body [9–13] and to spectroscopy applications [14,15]. Interest-
ingly, the brain, with its nearly spherical geometry was a less obvi-
ous target for arrays, and was among the last applications [16–18].

These demonstrations alone were enough to make array coils
the favored method for many types of MRI examinations. But a sec-
ond advantage of detection with arrays was soon introduced;
namely the ability to reconstruct under-sampled k-space data
and thus significantly speed up the MR image encoding process.
These parallel imaging reconstruction techniques effectively used
the additional spatial information contained in the signal intensity
and phase profiles of the array elements to allow reconstruction of
the image from under-sampled k-space data sets. In these meth-
ods, the image encoding is shared by the array coil and the gradient
encoding steps. It is interesting to note that most imaging modal-
ities rely exclusively on detector arrays for image encoding. For
example CCD cameras, EEG and MEG, rely on a dense array of
detectors, as does the human eye (where the retina is viewed as
an array of photo-detectors), and perhaps most intriguing, the in-
sect eye, which consists entirely of a directionally sensitive array
of light-pipes with a few photo-detector cells inside (ommatidia).
Medical imaging modalities such as MRI are the outliers where
the role of detection and encoding can be completely separated.
However, early MR researchers began to realize that the multiple
elements could play a role in image encoding [19–23]. While this
early work provided glimpses of what could be done, it was only
after Roemer’s work propelled the wide-spread implementation
of parallel reception that the time was right for incorporating the
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spatial information present in the array to augment gradient
encoding. The fact that the two types of encoding could be merged
elegantly, as shown by the introduction of SMASH [24] and SENSE
[25] in the late 1990s, opened the flood-gate to the variety of ro-
bust methods that exist today.

As a result of the sensitivity increase and encoding acceleration,
virtually every clinical coil sold for MRI scanners today is an array.
The trend toward higher and higher element counts has also in-
creased over the years; from the initial systems with 4–8 elements,
to the more commonly used 16–32 elements found on most new
scanners, to exploration of what can be done with 64–128 channels
on clinical systems.

In this review, we examine the theoretical basis for the trend to-
ward higher channels from so-called ‘‘ultimate SNR’’ and ‘‘ultimate
g-factor’’ analysis, as well as modeling regular geometries. We
compare these identified gains to what has been achieved with
32, 64, 96, and 128-channel arrays. We also look at how these
trends have forced us to re-think how we tune, match and decou-
ple coils for MR detection. Finally, we look at the trends in MR
acquisition sequences which now take advantage of the distribu-
tion of coil sensitivity patterns in all three directions.

2. Optimum combination of individual coil element data

In his original paper, Roemer described a way to elegantly com-
bine the data from the multiple receivers of the array. It is almost
always advantageous to combine data obtained from multi-chan-
nel array reception in the spatial domain, since the sensitivity pro-
files of each individual array element can be a steep function of the
pixel’s coordinates. Then the optimization can be done on a pixel-
by-pixel basis taking into account the spatially changing ampli-
tudes and relative phases of the sensitivity profiles. In addition to
measuring the coil signal map Si(x,y,z) for each element, i, which
tells us how the signal vectors will add, we need to know the noise
covariance matrix, W, which describes the thermal noise variance
in each channel and the covariance between pairs of channels,
which informs us of how the noise from the channels adds. For a
given pixel, we can form a vector of the coil sensitivity, C, and mea-
sured signal level, S, for each channel. Here C and S exist for each
pixel and are vectors of length Nch. We then generate the image
intensity, I, of the combined channels for that pixel from a normal-
ized weighted sum of the measured signal levels. The weights will
be chosen to maximize the SNR of the combined pixel. We also ex-
press the complex weights as a vector, w, of length Nch. Then the
general expression is:

I ¼ kwHS; ð1Þ

where k is a normalization constant which might vary as a function
of location but does not effect the pixels SNR. Roemer showed that if
the noise variances are equal and uncorrelated (w proportional to
the identity matrix), then w = C and

I ¼ kCHS: ð2Þ

To create an image with spatially uniform noise levels, k is cho-
sen as:

k ¼ ðCHCÞ�1=2
: ð3Þ

In coil arrays, noise correlations always occurs between chan-
nels (either the channel’s variances are unequal, or shared noise
or coupling exists in the array). Taking those coupling effects into
account, the image combination is fully optimized when
w = W�1C. This results in

IoptSNR ¼ kCHW�1S; ð4Þ

and k becomes as

k ¼ ðCHW�1CÞ�1=2
: ð5Þ

This can be thought of as ‘‘pre-whitening’’ the signal vector S
prior to the combination (replacing S with W�1S). Roemer also
showed that if the SNR is high in each channel, then the coil sensi-
tivity vector C is well approximated by the signal vector S and does
not need to be measured, i.e. the coil sensitivity is essentially just a
map of the signal with perfect SNR. If the noise covariance is also
proportional to the identity matrix and we use the k for uniform
noise, then we get what Roemer called the ‘‘root sum-of-squares’’
method;

IrSoS ¼
ffiffiffiffiffiffiffiffi
SHS

p
: ð6Þ

This is a particularly useful form because no pre-scan measure-
ments are required of C or W. One simply takes the sum of the
square of the signal levels of each channel’s measurement of that
pixel. Since the noise covariance matrix requires only a second to
acquire (by digitizing noise in the absence of excitation), it is useful
to add this information in, but preserve the estimation of C by S.
Then we have the ‘‘covariance weighted root-sum-of-squares’’

combination: Icov-rSoS = k SH W�1 S with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSHW�1SÞ

q
, which sim-

plifies to

Icov-rSoS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHW�1S

p
: ð7Þ

Given the choice of weights, wi, the image SNR is given by [8]:

SNR ¼ wHSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wHWw
p : ð8Þ

For the other combination methods, the resulting SNR can be
shown to be:

SNRrSoS ¼ SHSffiffiffiffiffiffiffiffiffiffiffiffi
SHWS

p ; ð9Þ

while the image SNR for the noise cov-SoS is

SNRcov-rSoS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHW�1S

p
: ð10Þ

Note that the SNR for the covariance weighted sum-of-squares
image is (remarkably) the same as the image itself.

In the combination methods above, the complex-valued
weights are chosen to maximize the image SNR using the coil sen-
sitivity profiles and noise covariance matrix (or estimates thereof).
The problem with the simple noise ROI in the ‘‘black’’ background
area of an image is that usually there is no estimate of the coil sen-
sitivities in this region. This results in sub-optimum combination
of the array elements in this region and an amplification of the
noise by an unknown factor. For example, if the rSoS method is
used, the channels are essentially weighted by noise and com-
bined. This is of little concern for discrimination of anatomy, since
the weights used inside the body are accurate, but it eliminates
this easy method of ROI outside the head to measure noise. Note
the ROI in the noise-only part of the image is perfectly valid for sin-
gle channel coils (after correction for the Rician distribution in
magnitude data [26] or if the coil sensitivity is known in that re-
gion (for example through a theoretical calculation).

Assessing the SNR of an image acquired with an array coil in a
manner that can be readily compared to either another group’s
measurements or to the SNR obtained by analyzing the signal
mean and variance of a time-series of images requires further con-
siderations. Kellman and McVeigh [27] elegantly described the ser-
ies of correction factors needed to produce SNR in ‘‘absolute units’’,
which are exactly what is needed to make the calculated SNR maps
agree with those obtained from a time-series measurement and
subsequently to make SNR maps directly comparable. When these
correction factors are used, the SNR measurement some important
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