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a b s t r a c t

The ESR of a magnetic probe sited at a distance R from an adatom in graphene, interacting via a RKKY
interaction, is studied. The spin relaxation rate of the magnetic probe in the case of pristine graphene sat-
isfies a T3 dependence for all temperatures at the Dirac point. However, away from the Dirac point a T3

dependence is observed only for high temperatures unlike the Korringa behavior at low temperatures.
Moreover, the zero-temperature relaxation rate of the pristine graphene demonstrates a quadratic
dependence on the chemical potential. In the presence of the magnetic adatom hybridized with one site
of the graphene sublattice we observe a dip in the relaxation rate away from the Dirac point. At the Dirac
point a deviation from the T3 dependence is observed. The presence of the Coulomb interaction U also
modifies the zero-temperature relaxation rate when compared to that of pristine graphene. The
transition from the magnetic state to the non-magnetic state is also characterized by a minimum in
the relaxation rate.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The pioneering experimental work of Andre Geim and Kostya
Novoselov, at the University of Manchester in 2004 [1–4], has
triggered a huge interest in the scientific community to study
graphene, mainly motivated by their unusual electronic properties,
such as the behavior of non-massive chiral Dirac fermion at low
excitation energies, as well the possibility of its application in
nanoscience and nanotechnology as a possible candidate to replace
the silicon-based electronics devices [5].

Graphene is truly a two-dimensional material, consisting of
carbon atoms in the sp2 hybridization state, distributed in a hexag-
onal lattice formed by two interpenetrating triangular sublattices,
A and B. In the lattice plane the s and p orbitals of the carbon atom
form covalent bonds, which give a high mechanical strength to
graphene. The remaining p orbitals of the carbon atoms in each
sublattice, in the direction perpendicular to the plane of the lattice,
hybridize, forming a conduction and a valence energy bands,
known as p� and p bands, respectively. The hexagonal distribution
of the carbon atoms results in two bands that touch each other at
two points of high symmetry in the Brillouin zone, K and K 0, known
as Dirac points, reason due to which graphene is considered as a
zero gap semiconductor. Around these points the dispersion rela-
tion takes a conical shape, with the energy varying linearly as a
function of the moment ~k, obeying the relation E ¼ ��hvF j~k j,
where �h is the reduced Planck constant and vF is the Fermi velocity,

that is similar to the dispersion relation of the photon, with the
speed of light c playing the role of the velocity of the electrons in
the Fermi level of graphene. As a two-dimensional Dirac fermion
system, graphene presents unusual and interesting behavior. For
instance, graphene shows a minimum conductivity about of e2=h,
an anomalous quantum Hall effect and a nonzero cyclotron mass
mc described by E ¼ mcv2

F , although from the linear spectrum of
fermion in graphene it would be zero. This similarity with Dirac
fermions enables the prediction of the properties of the charge
carriers in graphene from the relativistic Dirac equation, such as
tunneling through a potential barrier without any reflection, which
is known as Klein’s paradox.

In the last few years there has been an increased attention to
study the effect of magnetic adatom in a pristine graphene due
to its potential use in spintronics. Studies have been performed
to characterize the necessary conditions under which the
transition metal adatom on graphene can form localized magnetic
moment. Using density-functional-theory, a systematic first-
principles study of transition metals from Sc to Zn, including
nonmagnetic adatoms Cu and Au, embedded in graphene has been
performed [6]. It has revealed remarkable behavior of these ada-
toms in graphene. For example, the absence of magnetic moment
when a Fe or a Ni adatom is adsorbed, otherwise well known as
magnetic elements. On the other hand there is magnetic moment
when the adatom is one of V, Cr or Mn. The even more surprising
is that Cu and Au, which are nonmagnetic elements, become
magnetic when substituting a carbon atom in graphene.

One of the experimental techniques that can be used to analyze
the dynamic susceptibility of magnetic adatom in graphene is the
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electron spin resonance (ESR). It has proved to be an important
method in identifying the ground state of strongly correlated
electron systems. This technique measures the linewidth DH at
resonance absorption of a well-defined magnetic moment. ESR
measurements on graphene, a novel member of carbon nanostruc-
ture family, is yet very few. The work [7] reports ESR signal and spin
susceptibility with temperature for mechanically exfoliated
graphene for itinerant electron. However, one important question
continues to persist whether the ESR signal of the itinerant
electrons can be observed or not. For example, in the cases of Fe
or Ni adsorbed to the carbon atom in graphene, probably no detect-
able signal will be measured. For this reason we suggest the intro-
duction of an additional ESR probe ion in graphene. The probe, such
as Gd3+, will detect indirectly the effect of the dynamic susceptibil-
ity of the adatom via RKKY exchange interactions transmitted
through the conduction electrons. The ESR linewidth of a probe
with a stable magnetic moment is given by the transversal spin
relaxation rate (1=T2), which in graphene equals the longitudinal
relaxation rate (1=T1). The ESR of a magnetic probe has already been
studied in metals [8–10]. Moreover, recently ESR signal in graphene
has been studied including intrinsic Bychkov-Rashba and ripple
spin orbit coupling [11] which has shown that a large density of
states (DOS) and narrow line width are prerequisites to observe
ESR on graphene. Large DOS is possible by having chemical poten-
tial away from the Dirac point or by introducing impurities.

Magnetic adatom introduced in a metal has been successfully
studied in the light of the single adatom Anderson model [12],
which recently has been applied also to study adatom in graphene
[13,14]. Depending on the relation between the constitutive
parameters of this model, the adatom orbital can be empty, single
or doubly occupied. In particular, for temperatures higher than the
Kondo temperature [15], there is a formation of local magnetic mo-
ment when the adatom and the conduction electrons are weakly
hybridized and the Coulomb interaction between the electrons in
the adatom orbital is greater than their binding energy. Moreover,
for hybridization energy higher than the electron binding energy
the orbital presents the valence fluctuation regime [15]. It has been
observed that the coupling of an adatom to a graphene sublattice
results in a much easier formation of magnetic moment due to
the anomalous broadening of the electronic levels of the adatom
[15]. In the present work we study the ESR of a magnetic probe
in graphene sited at a distance R from an adatom with which inter-
acts via a RKKY interaction. Using analytic arguments, very re-
cently it has been shown that the RKKY interaction between
localized magnetic moments in doped graphene becomes more
long-ranged than in pristine graphene once the moments are set
in motion with a finite excitation frequency [16]. In addition it sug-
gests a way to overcome the difficulty to probe the RKKY interac-
tion in graphene, by exciting the magnetization of the magnetic
object in contact to it, which can be achieved using the method
of inelastic scanning tunneling spectroscopy (ISTS).

2. The model

The model Hamiltonian of graphene with an adatom hybridized
with a graphene sublattice and a probe interacting via a contact
interaction with the conduction electrons represented schemati-
cally in Fig. 1. is written as

H ¼ HTB þ Hf þ HV þ Hprobe ð1Þ

where HTB is the tight binding Hamiltonian of the graphene, Hf is
the adatom Hamiltonian, HV is the hybridization of the adatom
localized states with the graphene conduction electrons and Hprobe

is the contact interaction between the probe and the conduction
electrons.

The tight binding Hamiltonian is given by

HTB ¼ �t
X
hi;jir;l

ayrðRiÞbrðRjÞ þ H:c:
� �

ð2Þ

where the operator arðRiÞ (brðRjÞ) annihilates a state with spin r at
the position RiðRjÞ on the sublattice A (B), hi; ji stands for summation
over nearest neighbors and the parameter t is the nearest neighbor
hopping energy. In momentum space, we have

HTB ¼ �t
X
k;r

/ðkÞayk;rbk;r þ /ðkÞbyk;rak;r

h i
ð3Þ

where /ðkÞ ¼
P

deik: �di with �d1 ¼ aðx̂=2þ
ffiffiffi
3
p

=2ŷÞ, �d2 ¼ aðx̂=2�ffiffiffi
3
p

=2ŷÞ and �d3 ¼ �ax̂ as the nearest neighbor vectors. Diagonalizing
the Hamiltonian (3) one generates two bands ��ðkÞ ¼ �tj/ðkÞj,
which can be linearized around the Dirac points K at the corners
of the Brillouin zone: ��ðKþ qÞ � �vF jqj, where vF ¼ 3ta=2 is the
Fermi velocity of the Dirac electrons. Hence the Hamiltonian HTB

can be written as

HTB ¼
X
k;r

�þðkÞcyk;rck;r þ ��ðkÞdyk;rdk;r

h i
ð4Þ

where ck;r and dk;r can be written in the basis fak;r; bk;rg as

ck;r ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
/ðk�Þ
/ðkÞ

s
ak;r þ bk;r

 !

dk;r ¼
1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffi
/ðk�Þ
/ðkÞ

s
ak;r þ bk;r

 !

The adatom Hamiltonian is described by

Hf ¼
X
r
�f f yrfr þ Un"n#; ð5Þ

where fr(f yr) is the annihilation (creation) operator of a state with a
spin r ¼"; # of the adatom, nr ¼ f yrfr is the adatom occupation num-
ber operator, �f is the energy of the adatom electron, and U is the
Coulomb interaction due to the double occupancy of an energy level
in the adatom. For simplicity we adopt a mean-field approximation
to the electronic correlations at the adatom, Un"n# ¼
U
P

rhn�rif yrfr � Uhn"ihn#i. Hence, the adatom Hamiltonian can be
rewritten as Hf ¼

P
r�frf yrfr where �fr ¼ �f þ Uhn�ri. The adatom

orbital is sited at the origin of the sublattice B and is hybridized
with a hybridization strength V represented by the Hamiltonian

HV ¼ V
X
r
½f yrbrð0Þ þ H:c� ð6Þ

In the basis ck;r and dk;r we can write the hybridization Hamiltonian
as

HV ¼
Vffiffiffi
2
p

X
r
½f yrck;r þ f yrdk;r þ H:c� ð7Þ

Fig. 1. Schematic diagram of the lattice structure of graphene with an impurity
atom and the probe.
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