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a b s t r a c t

Cross-correlated relaxation (CCR) rates are an established tool for the extraction of relative bond
orientations in biomolecules in solution. CCR between dipolar interactions in four-spin systems is a par-
ticularly well-suited mechanism. In this paper, a simple approach to analyze systematic experimental
errors is formulated in a subspace of the complete four-spin Hilbert space. It is shown that, contrary to
the common assumption, the secular approximation of the relaxation matrix is marginal for the most
prominent spin systems. With the main focus on the model protein GB3 at room temperature, it is shown
that the apparent experimental CCR rates have errors between �12% and +4% for molecules with a molec-
ular tumbling time of 3.5 ns. Although depending on the specific pulse sequence used, the following
rule-of-thumb can be established: Judged by absolute values, the errors for Ha–Ca/Ha–Ca, HN–N/Ca–C0,
HN–N/Cc–Cb and HN–N/Hb–Cb CCR rates can safely be neglected. However, errors for HN–N/HN–N and
HN–N/Ha–Ca CCR rates are on the order of 0.1–0.3 s�1 and must be considered. Tabulated correction fac-
tors may be used for their extraction. If larger systems are studied, in most cases the errors cannot be
neglected anymore. On the other hand, well-calibrated pulses can safely be assumed to be perfect.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Dipolar cross-correlated relaxation (CCR) effects are an excel-
lent tool to analyze relative bond orientations in molecules [1–6].
In particular, multiple-quantum measurements in four-spin sys-
tems offer the possibility to correlate two interspin vectors that
do not share a common spin. In most cases, u, w, or v1 angles in
proteins have been assessed [7–14]. As the CCR rate is a time-
averaged observable, it has been proposed to inform on dynamics
[1,4,15–21]. A prerequisite of such a study is sufficient measuring
precision and accuracy.

It has been shown that different mechanisms affect the extrac-
tion of angles from CCR rates. Pulse sequences that make use of
decoupling sequences to conserve inphase magnetization are
prone to the creation of unwanted antiphase magnetization caused
by imperfections in decoupling sequences [22]. Angle calculation
from a CCR rate is usually based on the assumption of isotropic
molecular tumbling. Obviously, an error is introduced depending
on the degree of the anisotropy [4,21,23]. For a four-spin ½ system,
effects due to longitudinal relaxation rates of the passively coupled
spins have been examined using perturbation theory [24]. In addi-
tion, the nuclear Overhauser enhancement between the two
passively coupled spins has different effects on the double- and

zero-quantum coherences which are difficult to account for if their
scalar couplings to the MQ spins are similar (that is, JI1S1 � JI2S2)
[25]. Apparent measured CCR rates are also affected by scalar cou-
plings, and interference between them and longitudinal relaxation
[26,27]. For example, Hu et al. demonstrated the effect on CCR of
longitudinal relaxation and J couplings in a two-spin ½ system
[27].

This work pursues two goals. First, it is geared towards the spe-
cific case of CCR rates in the model protein GB3 [28]. In an attempt
to characterize the dynamic behavior of GB3 (molecular tumbling
time 3.4 ns at 298 K) more holistically, a large body of CCR rates,
mainly from the protein backbone, is currently collected. Some of
them, namely those between HN–N/Ha–Ca, HN–N/Cb–Cc and HN–
N/Ca–C0 have previously been published [5,21,29]. Further spin
systems of interest in this investigation are HN–N/HN–N, Ha–Ca/
Ha–Ca and HN–N/Hb–Cb. For this purpose, it is crucial to under-
stand all sources of systematic errors at every stage of the proce-
dure. The measurements are described with four-spin ½ systems.
All experiments are based on multiple-quantum coherences scalar
coupled to two longitudinal spins. Errors of the apparent CCR rates
are calculated which depend specifically on the pulse sequences,
pulse imperfections, the method of CCR rate calculation and spin
systems used in those studies. The calculations follow exactly the
experimental procedures by evolving the magnetization operators
numerically in a full evolution- and relaxation-matrix approach. In
doing so, the usual assumption of the secular approximation of the
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matrix is circumvented and off-diagonal elements that alter the
apparent CCR rates are explicitly included. Ultimately, correction
factors to the apparent CCR rates for specific cases are provided.
It is shown that, contrary to the common assumption, the secular
approximation is marginal. In some cases, it provides false results
while in others it may be safely used.

A second aim of this work is to make the approach seizable for a
more general use. It can easily be adapted to any spin system and
pulse sequence, as only the basic elements of the pulse sequence
have to be brought in the correct order. In addition, results for lar-
ger molecules with three and six times the tumbling time of GB3
are provided.

2. Theory

2.1. Full matrix description of cross-correlated relaxation in a four-spin
½ system

In the following, a matrix including spectral frequencies and
contributions to relaxation is constructed. In practice, the spin sys-
tem consists of two spins involved in a multiple-quantum coher-
ence MQ, I1 and S1, and two spins, I2 and S2, which are passively
coupled by the scalar couplings JI1I2 and JS1S2. This condition re-
stricts the calculation to a subspace of a general four-spin Hilbert
space. The MQ subspace is only spanned by transverse operators
which are chosen to be the raising and lowering operators. I2 and
S2 can be expressed by the identity (E) and longitudinal operators.
These are transformed into the basis formed by a and b states, {aa,
ab, ba, bb}. Any magnetization in the subspace under consider-
ation can then be expressed by a 16-dimensional magnetization
vector:

~M ¼ ðZQaa
þ�;ZQab

þ�;ZQba
þ�;ZQbb

þ�;ZQaa
�þ;ZQab

�þ;ZQba
�þ;ZQbb

�þ;DQaa
þþ;

DQab
þþ;DQba

þþ;DQbb
þþ;DQaa

��;DQab
��;DQba

��;DQbb
��Þ

T ð1Þ

ZQ and DQ are the zero- and double-quantum coherences obtained
by the respective combinations of the raising (+) and lowering oper-
ators (�) of I1 and S1 as indicated in the subscript and the super-
scripts define the states of I2 and S2.

Double-inphase (IP, IP) and double-antiphase (AP,AP) zero- and
double-quantum coherences with respect to the two passively
coupled spins are then expressed as:

~MIP;IP
ZQ ¼

ffiffiffi
2
p
ð1=4;1=4;1=4;1=4;1=4;1=4;1=4;1=4;

0;0;0;0;0;0;0;0ÞT

~MAP;AP
ZQ ¼

ffiffiffi
2
p
ð1=4;�1=4;�1=4;1=4;1=4;�1=4;�1=4;

1=4;0;0;0;0;0;0; 0;0ÞT

~MIP;IP
DQ ¼

ffiffiffi
2
p
ð0;0;0;0;0;0; 0;0;1=4;1=4;1=4;1=4;1=4;

1=4;1=4;1=4ÞT

~MAP;AP
DQ ¼

ffiffiffi
2
p
ð0;0;0;0;0; 0;0; 0;1=4;�1=4;�1=4;1=4;

1=4;�1=4;�1=4;1=4ÞT

ð2:1 — 4Þ

The normalization factor is chosen such that the scalar product
ð~MxP;xP

uQ Þ
T � ~MyP;yP

vQ ¼ du;v;x;y, where du,v;x,y is Kronecker’s delta
function.

Manipulation of the initial magnetization vector is simulated by
matrices describing pulses, relaxation, scalar coupling and chemi-
cal shift evolution. The total time T is divided up into N periods
of free evolution ti and (N � 1) (possibly multispin-) pulses which
are assumed to be executed instantaneously. The pulse operations
are given by matrices Pi and free evolution is given by the matrix F,
which is identical for all periods. In integrated form the magnetiza-
tion evolution is given as:

~Mu;v
MQ ðTÞ ¼ e�FtN

YN�1

i¼1

PieFti ~Mu;v
MQ ð0Þ ð3Þ

Free evolution is computed upon diagonalization:

eFti ¼ UeDti U�1 ð4Þ

D is the diagonal matrix containing the eigenvalues of F and U is the
transformation matrix containing the eigenvectors.

The intensity of an observed signal selected by the observation
operator ~Mobs is given by the projection

Iu;v
MQ ¼ ð~MobsÞT � ~Mu;v

MQ ðTÞ
��� ��� ð5Þ

2.2. Construction of pulse matrices

The P matrices executing pulses on I2, S2 or both have the fol-
lowing form since transitions occur only within the ZQ and DQ
subspaces:

P I2

S2

I2S2

¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0BBB@
1CCCA� eP I2

S2

I2S2

ð6Þ

The tensor product (direct product) of matrices is used. P is
composed of four identical 4 � 4 submatrices eP . Inversion pulses
only applied to I2 or S2 are given as:

eP180
I2
¼

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0BBB@
1CCCA; eP180

S2
¼

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0BBB@
1CCCA ð7:1 — 2Þ

If the pulses are imperfect, three- or four-spin coherences are
generated which are assumed to be undetectable (this can be
shown to be true for all pulse sequences analyzed in this work).
Therefore, eP is replaced by linear combinations of eP and the iden-
tity matrix:

eP I2 ¼

k 0 j 0
0 k 0 j
j 0 k 0
0 j 0 k

0BBB@
1CCCA; ePS2 ¼

k j 0 0
j k 0 0
0 0 k j
0 0 j k

0BBB@
1CCCA ð8:1-2Þ

k ¼ 1þ Cosð/Þ
2

; j ¼ 1� Cosð/Þ
2

/ is the effective angle rotation caused by the pulse. Simultaneous
execution of pulses on both I2 and S2 is described by:eP I2S2 ¼ eP I2

ePS2 ð9Þ

Inversion pulses on I1 and S1 induce transitions between ZQ and DQ
coherences:

P180
I1
¼

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0BBB@
1CCCA�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0BBB@
1CCCA;

P180
S1
¼

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0BBB@
1CCCA�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0BBB@
1CCCA

ð10:1 — 2Þ

Here no modification for imperfect pulses is used since it is as-
sumed that they lead to dephasing of the MQ magnetization by
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