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a b s t r a c t

It is shown below that complex diffusion anisotropy observed in diffusion-weighted MRI can be fully
accounted for by allowing for non-locality of the spatial operator in the diffusion equation. The anisot-
ropy is represented by a distribution over directions on a sphere. It allows recognition of fiber tracts
crossing at arbitrary angles. A simple generalization of the Stejskal–Tanner equation for the determina-
tion of the ODF is presented. Furthermore, an explicit solution of the Bloch–Torrey equation for an aniso-
tropic time-fractional diffusion equation is obtained in terms of a generalized Mittag–Leffler type
function.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Apparent Diffusion Coefficient (ADC) of water in a structur-
ally complex environment of a cell or tissue is strongly anisotropic
due to the restrictions of water motion imposed by cell mem-
branes, ligaments, etc. In MRI the ADC is estimated by comparing
the reaction of magnetization to two successive magnetic field
pulses that would cancel each other in the absence of diffusion.
The magnetic pulses are inhomogeneous in the space. For simplic-
ity they have a constant gradient that varies in time. Due to its dis-
placement in the inhomogeneous magnetic field the hydrogen
atom is subjected to two successive magnetic pulses that do not
cancel each other. The mismatch depends on the range of diffusion
and on the direction of the magnetic field gradient relative to the
direction of diffusive motion. The direction of the magnetic field
gradient g is used to probe various directions of diffusion in the
tissue.

In Diffusion Tensor Imaging (DTI) the anisotropy of the diffusive
flux is assumed to be represented by a rank-2 diffusion tensor. The
signal attenuation in the Stejskal–Tanner formula is given by an
exponential of the associated quadratic form in the components
of the field gradient vector.

The observed anisotropy pattern of diffusion is however quite
complex and cannot be described by quadratic polynomial. In
applications to tractographic reconstruction of fiber tracts this

model provides only one direction of enhanced diffusivity – the
direction of the eigenvector corresponding to the largest eigen-
value. As a result it is possible to identify at most one fiber tract
direction in each voxel and fiber crossings cannot be detected.

The results of high-resolution MRI scanning of brain and bio-tis-
sues indicate the need for higher-order anisotropy of diffusion
coefficients in the Stejskal–Tanner formula [1]. In order to account
for observed anisotropy Özarslan and Mareci expressed the signal
attenuation in the Stejskal–Tanner formula in terms of polynomi-
als of arbitrarily high degree in the magnetic field gradient.

Alternative methods have been suggested to detect higher-or-
der anisotropy such as q-space imaging [2,3] or Q-ball imaging
[4] and their modifications. Our method is based on a modification
of the Stejskal–Tanner formula and will therefore be compared
with [1].

The Stejskal–Tanner formula can be derived from the Bloch–Tor-
rey equation describing diffusion of protons in a constant gradient
magnetic field. The observed dependence of the MR signal on the
direction of the field gradient must be accommodated in the anisot-
ropy of the diffusion equation. Özarslan and Mareci suggested an ad
hoc diffusion equation with diffusion coefficient dependent on the
direction of the magnetic gradient. This model is however inconsis-
tent with Torrey’s extension of the Bloch equations [5]. It is shown
here that the same anisotropy pattern can be explained by an aniso-
tropic superdiffusion model. In contrast to [1] in our model the b
factor involves the gradient amplitude g0 raised to the power a,
with a new diffusion parameter a 6 2, while in their paper b in-
volves the square of g0. Apart from that the conclusions for tracto-
graphic reconstruction of fiber bundles or for mapping scalar
anisotropy measures (see [1,6,7]) are the same in both papers.
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In this paper water diffusion in tissue is represented by a pseu-
do-differential operator of order a 6 2 which has the required
anisotropic properties. The proposed operator is non-local. In the
absence of anisotropy it reduces to a fractional power of the Lapla-
cian �Dð�r2Þc, where 0 < c 6 1 and D is a positive constant. Our
proposal is thus an extension of the anomalous diffusion model
introduced in order to explain observed deviations from the classi-
cal Stejskal–Tanner formula [8–10]. For a ¼ 2 it reduces to diffu-
sion with tensorial anisotropy. For a < 2 the anisotropy is
represented by a distribution of directions of diffusive motion ex-
pressed by a measure on the unit sphere.

The pseudo-differential operators discussed in this paper are
parameterized by a measure m on the unit sphere. This measure
replaces the more crude tensorial representation of the depen-
dence of the MR signal on the direction of the field gradient in
DTI. The Stejskal–Tanner formula can be used to sample the mea-
sure m. By an analysis of the flux density operator it is argued that
the maxima of the density H of m represent the directions of max-
imum diffusivity and thus can be associated with the directions of
fiber tracts or channels.

The maxima of the density H can be searched by a peak search-
ing algorithm. We therefore discuss some issues involving interpo-
lation of H.

The solution of the same problem for a time-fractional diffusion
equation is also presented. The solution is expressed in terms of a
Mittag–Leffler type function instead of the exponential. The Stejs-
kal–Tanner formula for this case is therefore much more compli-
cated and is not presented in this paper.

2. The anomalous diffusion equation

It has already been noticed earlier that the observed attenuation
of the magnetization deviates from the classical Stejskal–Tanner
formula. In order to account for this deviation Magin et al. [9] con-
sidered time-fractional diffusion equations Dbu ¼ Dr2u with
0 < b 6 1, where Db denotes the Caputo derivative [11,12], defined
by the equation

Dbu :¼ I1�bDu; 0 < b 6 1 ð1Þ

where the operator Ic; c > 0, defined by the formula

Icu :¼
Z t

0

sc�1

CðcÞuðt � sÞds ð2Þ

is the fractional integral operator. The positive constant D is a diffu-
sion coefficient of dimension ½length2

=timeb�.
A different generalization of the diffusion equation involves a

pseudo-differential operator Q instead of Dr2:

Dq ¼ Qq ð3Þ

with an initial condition qð0; xÞ ¼ q0ðxÞ. The operator Q is a pseudo-
differential operator such that Eq. (3) preserves positivity, i.e. every
solution of Eq. (3) with non-negative initial data is non-negative.

A sufficiently large class of pseudo-differential operators Q of
the required kind is defined by their symbol

bQ ðkÞ ¼ � Z
S

jk � yjamðdyÞ ð4Þ

where S denotes the surface of the unit sphere centered at 0, m is a
measure on the sphere and a is a parameter satisfying the inequal-
ities 0 < a 6 2. The action of Q is defined by the equationZ

e�ik�x½Qf �ðxÞdx ¼ bQ ðkÞf̂ ðkÞ ð5Þ

For a = 2bQ ðkÞ ¼ �kTAk

and

Q ¼ �rTAr ð6Þ

where

A :¼
Z
S

yyTlðdyÞ ð7Þ

is a positive semi-definite matrix. In this case we are back in the
framework of DTI.

The operators defined by (4) are a special class of generators of
a-stable Lévy processes. All the operators in this class are positivity
preserving [13]. An independent proof of this property, based on
the theory of non-local diffusion equations, is given Appendix A.

A further generalization of Eq. (3)

Dbq ¼ Qq; 0 < b 6 1 ð8Þ

with an initial condition qð0; xÞ ¼ q0ðxÞwill also be discussed. It fol-
lows from an integral representation of solutions of Eq. (8) in [14]
that the solutions of Eq. (8) with non-negative initial data are
non-negative if Eq. (3) has this property (see B).

A special case of (8) is the time–space fractional diffusion
equation

Dbq ¼ �D ð�r2Þa=2q ð9Þ

with D > 0 of dimension ½lengtha
=timeb�;0 < b 6 1;0 < a 6 2 [14].

The expression on the right-hand side is defined by its Fourier
transform jkjaq̂ðt;kÞ. In one-dimensional space eq. (9) reduces to
the equation

Dbq ¼ D RDaq ð10Þ

considered in [9], where RDa f denotes the Riesz derivative of f ðxÞ
defined by its Fourier transform jkja f̂ ðkÞ [11,15].

Eq. (10) can be derived from CTRWs (Continuous Time Random
Walks, [16]), in which the time-fractional aspect is linked to long
waiting times for a trapped particle to escape, while the space-frac-
tional aspect is associated with availability of long jumps whose
lengths are distributed according to a probability density that does
not have a finite variance. The traps slow the diffusion giving rise
to subdiffusion, for which there is ample evidence in bio-tissue
[17]. Availability of long jumps alone (Lévy flights) results in super-
diffusion. Combining the two mechanisms may give rise to either
of these regimes. Another background for Eq. (10) involves fractal
structure and self-similarity [18]. For the solutions of Eq. (9) or

Notation

Rd the space of d-tuples of reals fx1; . . . ; xdg
ddx dx1 . . . dxdR

. . . ddx
R

Rd . . . ddx
v �w :¼

Pd
i¼1v iwi scalar product of two vectors

Ia fractional integral operator (defined in the paper)
Da fractional differential operator (defined in the paper)

~f ðpÞ :¼
R1

0 e�ptf ðtÞdt Laplace transform
f�t gðtÞ :¼

R t
0 f ðsÞgðt � sÞds;

f̂ ðkÞ :¼
R

eik�xf ðxÞddx Fourier transform
f�x gðxÞ :¼

R
f ðx0Þgðx� x0Þddx0 (integration over the entire space)
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