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a b s t r a c t

Self-diffusion in polymer solutions studied with pulsed-field gradient nuclear magnetic resonance (PFG
NMR) is typically based either on a single self-diffusion coefficient, or a log-normal distribution of self-
diffusion coefficients, or in some cases mixtures of these. Experimental data on polyethylene glycol
(PEG) solutions and simulations were used to compare a model based on a gamma distribution of self-
diffusion coefficients to more established models such as the single exponential, the stretched exponen-
tial, and the log-normal distribution model with regard to performance and consistency. Even though the
gamma distribution is very similar to the log-normal distribution, its NMR signal attenuation can be writ-
ten in a closed form and therefore opens up for increased computational speed. Estimates of the mean
self-diffusion coefficient, the spread, and the polydispersity index that were obtained using the gamma
model were in excellent agreement with estimates obtained using the log-normal model. Furthermore,
we demonstrate that the gamma distribution is by far superior to the log-normal, and comparable to
the two other models, in terms of computational speed. This effect is particularly striking for multi-com-
ponent signal attenuation. Additionally, the gamma distribution as well as the log-normal distribution
incorporates explicitly a physically plausible model for polydispersity and spread, in contrast to the single
exponential and the stretched exponential. Therefore, the gamma distribution model should be preferred
in many experimental situations.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Pulsed-field gradient nuclear magnetic resonance (PFG NMR) is a
powerful method to evaluate translational motion such as diffusion
or flow [1,2]. If the sample studied is sufficiently monodisperse, the
(mean) self-diffusion coefficient can be obtained by fitting a single
exponential function to the observed signal attenuation [3]. Also
multi-component systems can easily be studied because of their
chemical shift resolution. However, when the self-diffusion of for
example a polymer is characterized by a molecular weight distribu-
tion and a corresponding distribution of self-diffusion coefficients,
we obtain a more complex signal attenuation [4–7]. The probability
distribution of self-diffusion coefficients may be extracted by using
an inverse Laplace transform, typically using the CONTIN frame-
work, where no specific functional form or shape assumptions are
imposed, but the solution is regularized for smoothness [8–11].
Even though being notoriously difficult and very noise-sensitive,

this approach has been widely applied in various techniques, e.g.
NMR relaxation and diffusion measurements, and dynamic light
scattering [12,13]. An alternative approach is to assume a specific
but flexible functional form, using e.g. the so-called stretched
exponential, cumulant expansions, or a log-normal distribution
model [14,15,5]. Many functional forms yield more or less identical
fits and results in terms of the first two moments of a distribution
(mean and variance) [16]. Thus, it is possible to choose the
specific functional form based on simplicity and computational
convenience.

In this paper, we propose to use a model based on a gamma dis-
tribution of self-diffusion coefficients. We discuss and compare dif-
ferent models for evaluating the NMR signal attenuation obtained
from a PFG NMR experiment of polymers in water. In particular, we
compare the computational speed and performance of the gamma
model to the single exponential, the stretched exponential, and the
log-normal models, all of which are already accepted and spread
within the community. Although the gamma distribution has been
mentioned in the literature as a model for a distribution of
self-diffusion coefficients [15], its performance and suitability for
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the analysis of PFG NMR data appears not to have been thoroughly
evaluated. To do this is the purpose of this work.

We first describe the basic theory and put the gamma distribu-
tion model in context. Then, we evaluate the single exponential,
the stretched exponential, the log-normal, and the gamma model
on experimental data sets of two polyethylene glycol (PEG) solu-
tions with different polydispersity and also on several simulated
data sets. The models are compared in terms of estimated mean
self-diffusion coefficient, spread and polydispersity index. The per-
formance of the gamma distribution model is compared to all other
models, and in particular to its most obvious competitor, the log-
normal distribution model.

2. Theory

For a single self-diffusion coefficient, Stejskal and Tanner [17]
showed that the echo decay is exponential (the so called single
exponential model),

IðkÞ ¼ I0 expð�khDiÞ; ð1Þ

where I0 is the signal intensity before decay (for k = 0), hDi is the
mean self-diffusion coefficient (actually, it is the only one, but we
stick to the hDi notation for consistency), and

k ¼ ðcgdÞ2 D� d
3

� �
: ð2Þ

Here, c is the proton magnetogyric ratio (c = 2.6752 � 108 rad
T�1 s�1), g is the gradient strength, d is the gradient pulse duration,
and D is the time lapse between the leading edges of the gradient
pulses. In a plot of log I(k) vs. k, a single self-diffusion coefficient will
manifest itself by a linear decay (straight line). Generally, the echo
attenuation shows non-linear behavior for molecules with a large
degree of polydispersity. The obvious interpretation is that a single
self-diffusion coefficient cannot accurately describe the features of
the system. Perhaps the simplest way of dealing with this problem
is to use the stretched exponential model,

IðkÞ ¼ I0 expð�ðkDappÞbÞ; ð3Þ

a phenomenological relationship which is able to express polydis-
persity to some extent through the ‘stretch’ parameter b [18,19],
and some attempt have been made to interpret this in terms of
polydispersity [20]. However, the relation between spread and the
value of the beta parameter is complicated [20]. However, the
stretched exponential model does not correspond to an actual distri-
bution of self-diffusion coefficients. Accordingly, there is no expres-
sion relating Dapp, the apparent self-diffusion coefficient, to the true,
mean self-diffusion coefficient hDi; however, as was pointed out by
Callaghan (personal communication) it can be shown that

1
D

� �
¼

1
b C 1

b

� �
Dapp

; ð4Þ

where C is the gamma function. However, since h1/D i�1 – hDi, any
estimate of the mean self-diffusion coefficient will be weighted to-
ward the slowly diffusing molecules. Therefore, a more physically
adequate approach is to start by assuming that the self-diffusion
coefficient D follows a probability distribution P(D), which yields
that the attenuation is an integral (weighted sum) over different
exponential decays,

IðkÞ ¼ I0

Z 1

0
PðDÞ expð�kDÞdD: ð5Þ

In general, the functional form of P(D) is unknown [6]. However, a
very common assumption is that the self-diffusion coefficients are

log-normally distributed [21]. The log-normal distribution has
probability density

PLðD;l;rLÞ ¼
1

D
ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

L

q exp �ðlog D� lÞ2

2r2
L

 !
; ð6Þ

with l ¼ logðhDiÞ � r2
L=2 where hDi is the mean of D, and

r2
L ¼ logð1þ CV2Þ. The spread, or coefficient of variation (CV), is de-

fined as CV = (standard deviation/mean) � 100%. However, the log-
normal distribution does not yield an analytically tractable integral
in Eq. (5). We suggest an alternative for the distribution P(D) that
does yield a tractable integral, namely the gamma distribution,

PGðD; j; hÞ ¼ Dj�1 expð�D=hÞ
CðjÞhj ; ð7Þ

where C is the gamma function, j is the ‘shape’ parameter, and h is
the ’scale’ parameter. Replacing P(D) in Eq. (5) with PG gives the
echo decay model

IðkÞ ¼ I0ð1þ khÞ�j
; ð8Þ

which can be written by using mean self-diffusion coefficient hDi
and standard deviation rG as

IðkÞ ¼ I0 1þ kr2
G=hDi

	 
�hDi2=r2
G ð9Þ

(see A for details regarding the gamma distribution model). This lat-
ter expression is not only more transparent to the practitioner, but
was also found to be more numerically well-behaved. We will be
interested in the spread CV and the polydispersity index, defined as

PDI ¼ Mw

Mn
; ð10Þ

where Mw and Mn are the weight-average and the number-average
molecular weights, respectively [22]. The polydispersity index is per
se a measure of the width of the molecular-weight distribution,
whereas with PFG NMR we estimate the self-diffusion coefficient dis-
tribution. The self-diffusion coefficient D can be related to the
molecular weight M by

D ¼ KM�a; ð11Þ

with K and a being scaling parameters. From the parameters of the
self-diffusion coefficient distribution, the polydispersity index can
be computed as

PDI ¼ exp
r2

L

a2

� �
ð12Þ

for the log-normal model and by

PDI ¼ 1þ r2
G

hDi2

 !1=a2

ð13Þ

for the gamma model (see B for details about the polydispersity in-
dex calculations). In this paper we use a = 0.525, the value previ-
ously measured for dilute PEG in water [6].

For multiple components which cannot be resolved due to their
chemical shift, it is assumed that the signal attenuation is a
weighted sum of several attenuations of any of the above types.

Fitting the models to data is performed by the standard non-lin-
ear least squares method [23]. We minimize the sum

S ¼
X

n

ðIobsðknÞ � IðknÞÞ2; ð14Þ

where Iobs(kn) is the normalized signal intensity for k = kn, yielding
least squares (or equivalently, if the noise truly is Gaussian and
independent, maximum likelihood [24,25]) estimates of the param-
eters for the chosen model.
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