Contents lists available at SciVerse ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

Practical choice of ¹H–¹H decoupling schemes in through-bond ¹H–{X} HMQC experiments at ultra-fast MAS

Yusuke Nishiyama ^{a,*}, Xingyu Lu^b, Julien Trébosc^b, Olivier Lafon^b, Zhehong Gan^c, P.K. Madhu^d, Jean-Paul Amoureux^b

^aJEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan ^bUCCS (CNRS-8181), Lille North of France University, Villeneuve d'Ascq 59652, France ^c Center of Interdisciplinary Magnetic Resonance, NHMFL, Tallahassee, FL 32310, USA ^d Department of Chemical Sciences, TIFR, Colaba, Mumbai 400 005, India

ARTICLE INFO

Article history: Received 9 June 2011 Revised 5 October 2011 Available online 9 November 2011

Keywords: Solid-state NMR ¹H Very fast MAS 1 mm MAS HMQC CRAMPS

ABSTRACT

Three ¹H–¹H homonuclear dipolar decoupling schemes for ¹H indirect detection measurements at very fast MAS are compared. The sequences require the following conditions: (i) being operable at very fast MAS, (ii) a long T'_2 value, (iii) a large scaling factor, (iv) a small number of adjustable parameters, (v) an acquisition window, (vi) a low rf-power requirement, and (vii) a z-rotation feature. To satisfy these conditions a modified sequence named TIIted Magic-Echo Sandwich with zero degree sandwich pulse (TIMES₀) is introduced. The basic elements of TIMES₀ consist of one sampling window and two phaseramped irradiations, which realize alternating positive and negative 360° rotations of ¹H magnetization around an effective field tilted with an angle θ from the B_0 axis. The TIMES₀ sequence benefits from very large chemical shift scaling factors at ultra-fast MAS that reach κ_{cs} = 0.90 for θ = 25° at v_r = 80 kHz MAS and only four adjustable parameters, resulting in easy setup. Long $\kappa_{cs}T'_2$ values, where T'_2 is a irreversible proton transverse relaxation time, greatly enhance the sensitivity in ¹H-{¹³C} through-bond *I*-HMQC (Heteronuclear Multiple-Quantum Coherence) measurements with ¹H-¹H decoupling during magnetization transfer periods. Although similar sensitivity can be obtained with through-space D-HMQC sequences, in which ¹³C-¹H dipolar interactions are recoupled, J-HMQC experiments incorporating 1 H 1 H decoupling benefit from lower t_{1} -noise, more uniform excitation of both CH, CH₂ and CH₃ moieties, and easier identification of through-bond connectivities.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Sensitivity enhancement by indirect detection of ¹³C and ¹⁵N spectra via ¹H nuclei is a well established method in solution nuclear magnetic resonance (NMR) experiments [1–3]. Since the magnetization is transferred via *J*-coupling, the resulting 2D spectra show through-bond correlations which are useful for resonance assignments. The sensitivity enhancements are due to high natural abundance (\approx 99.99%) and gyromagnetic ratio of ¹H. The narrow line-widths of ¹H nuclei and their long T'_2 values, which are much longer than the magnetization transfer periods, even for small *J* couplings, greatly contribute to sensitivity enhancement. However, high natural abundance and gyromagnetic ratio also lead to strong ¹H–¹H homonuclear dipolar interactions, which are fortunately averaged out by fast isotropic tumbling motions in the solution state. On the other hand, these interactions induce rapid spin diffusion among ¹H nuclei in rigid-solid samples, resulting in short T'_2

relaxation times, typically less than tens of micro-seconds, and in broad ¹H line-widths usually more than 50 kHz under static conditions. These two facts quickly quench ¹H magnetization during the magnetization transfer periods and signal acquisition. Thus, indirect detection via ¹H nuclei in solid state seems not to be as efficient as in solution state, especially if ¹H–¹H interactions are not greatly decreased [4–11].

Decoupling of ${}^{1}\text{H}-{}^{1}\text{H}$ homonuclear dipolar interactions is hence essential to achieve efficient indirect-detection via ${}^{1}\text{H}$ nuclei in solids. Theoretically, ${}^{1}\text{H}-{}^{1}\text{H}$ homonuclear decoupling is easily realized by only applying an infinitely fast magic-angle spinning (MAS) sample rotation. Recently, rotation frequencies have largely increased with the advent of small diameter rotors [12]. However, even at $v_r = 80$ kHz, which is the fastest spinning frequency commercially available now [13], ${}^{1}\text{H}-{}^{1}\text{H}$ interactions still show significant effect on ${}^{1}\text{H}$ line-width and T'_{2} value (see Figs. 2 and 4). Therefore, rf irradiations, as well as MAS, are needed to decouple efficiently these interactions. Numerous ${}^{1}\text{H}-{}^{1}\text{H}$ decoupling schemes have been designed from the early stage of NMR [14–49]. Recently, sophisticated methods were developed by considering rf and mechanical averaging

^{*} Corresponding author. Fax: +81 42 546 8068.

E-mail address: yunishiy@jeol.co.jp (Y. Nishiyama).

simultaneously [25-32]. Synchronized [29-32] or non-synchronized [33,34,38-41] Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) methods with ultra-fast MAS above $v_r = 60 \text{ kHz}$ have been introduced, including SAM [29–31], RN_n^{ν} [32], wPMLG^{xx}_{pp} [33], eDUMBO [38,40], and TIMES [41]. All of these rf-assisted ¹H⁻¹H decoupling methods suppress ¹H⁻¹H dipolar interactions, but inevitably introduce scaling down of ¹H isotropic chemical shifts, as well as of ${}^{13}C-{}^{1}H$ *J*-couplings, by a factor of κ_{cs} . As CRAMPS direct ¹H signal acquisition introduces a large additional noise and artifacts, very fast MAS alone is frequently preferred for line-narrowing in the direct ¹H dimension [5,50–52]. To our knowledge, no measurement of T'_2 enhancement by ¹H–¹H dipolar decoupling during magnetization transfer periods has been reported for ¹³C indirect detection in fast MAS through-bond ¹H-{¹³C} correlation experiments. Although, this T'_2 enhancement has been demonstrated in the ¹³C direct detection scheme at moderate MAS frequencies [53].

In this article, we investigate the ¹H–¹H decoupling schemes during the magnetization transfer periods in through-bond ¹H-{¹³C} correlation experiments with indirect ¹³C observation via ¹H nuclei. The decoupling scheme should: (i) work well at very fast MAS to narrow the ¹H line-widths, (ii) enhance the T'_{2} relaxation time to reduce signal decay during the magnetization transfer periods, and (iii) show a large scaling factor to shorten the magnetization transfer periods. In addition to these features, it is preferable that the decoupling scheme presents several additional features: (iv) a small number of parameters to be optimized, (v) an acquisition window enabling a direct 1D observation during optimization, (vi) a moderate rf power requirement, and (vii) an effective global precession of the spins around B_0 , usually called a *z*-rotation. Features (iv) and (v) enable a fast optimization of experimental parameters by directly observing 1D spectra. Features (vi) and (vii) are preferable to avoid sample heating and artificial modulations due to zero or symmetrical false ¹H peaks, respectively. Usually, feature (vii) presents the disadvantage of reducing the scaling factor; but it has experimentally been found that this is not the case for very fast MAS [49], as shown below.

First, we investigate two ${}^{1}H{-}{}^{1}H$ decoupling schemes, wPMLG^{xx}_{pp} and TIMES, at very fast MAS. We also introduce a new version of TIMES, named TIMES₀, in which the sandwich pulses are removed, thus leading to favorable features for ${}^{1}H{-}{}^{13}C$ *J*-HMQC (Heteronuclear Multiple-Quantum Coherence) experiments at ultra-fast MAS. To conclude, we compare two different ${}^{1}H{-}{}^{13}C$ indirect HMQC observations, either based on through-bond or on through-space correlations.

2. ¹H–¹H homonuclear decoupling schemes

In the article, we focus on three windowed non rotor-synchronized ¹H-¹H decoupling schemes: wPMLG^{xx}_{pp}, TIMES and TIMES₀ (Fig. 1a). Indeed, these sequences work well at very fast MAS, enhance the T'_2 relaxation time, have an acquisition window, and offer an effective *z*-rotation for ¹H magnetization [33,41]. The gray sandwich pulses are removed in wPMLG^{xx}_{pp} and TIMES₀, and hence, experimentally their pulse sequences are similar. However, as shown below, the two basic concepts of wPMLG_{pp}^{x\bar{x}} and TIMES₀ sequences are very different and their optimizations do not only correspond to a re-parameterization process. In the three sequences the magnetization is rotated during each τ_p period with an angle ψ around the effective field, which is tilted from the B_0 axis by the angle θ . Every cycle period, $\tau_c = 2(\tau_p + \tau_{\theta}) + \tau_w$, the global rotation is cancelled in each R or \overline{R} unit, since the direction of the rotation in the second τ_p period is reversed. Thus, the interaction frame of the rf-field is coincident with the rotating frame in each sampling window, τ_w , where the NMR signal is sampled. An

effective *z*-rotation for the magnetization is achieved by applying two effective fields symmetrical with respect to B_0 during two consecutive τ_c periods [46–48]. The major difference between these methods is the ψ angle value and the presence or absence of sandwich pulses. These sequences are summarized in Table 1.

Let's first analyze the wPMLG^{xx}_{pp} sequence, which is composed with the R (wPMLG^x_p) and \overline{R} (wPMLG^x_p) units. Each unit was originally designed by adding an acquisition window to the windowless PMLG sequence, which is essentially the same as the Frequency-Switched Lee–Goldburg (FSLG) sequence [20]. In FSLG, the tilt of the effective field is achieved by an off-resonance irradiation at v_{off} frequency, whereas PMLG employs an on-resonance irradiation and the tilt of the effective field results from a sweep of the rf phase from 0 to ϕ_{last} [22]:

$$\phi_{\text{last}}(^{\circ}) = 360 \cdot v_{\text{off}} \cdot \tau_{\text{p}},\tag{1}$$

where τ_p is the length of the ramped on-resonance irradiation. The rotation angle ψ about the effective field during τ_p is described by:

$$\psi(^{\circ}) = 360 \cdot v_{\text{eff}} \cdot \tau_{\text{p}} = 360 \cdot \sqrt{v_{1\text{p}}^2 + v_{\text{off}}^2 \cdot \tau_{\text{p}}} = \sqrt{(360v_{1\text{p}}\tau_{\text{p}})^2 + \phi_{\text{last}}^2},$$
(2)

where v_{1p} is the strength of the on-resonance B_1 field during the phase ramp. v_{eff} is the strength of the effective field, which is tilted by the angle θ with respect to the B_0 magnetic field:

$$\tan \theta = \frac{v_{1p}}{v_{\text{off}}}.$$
(3)

 $\theta = \theta_{\rm m} = 54.74^{\circ}$ is used in FSLG and PMLG to achieve the Lee–Goldburg condition, and the theoretical length of the phase ramp irradiation is chosen to achieve a full $\psi = 360^{\circ}$ rotation about the effective field, thus leading to $\tau_{\rm p} = 1/v_{\rm eff} = 1/\left(v_{\rm off}^2 + v_{\rm 1p}^2\right)^{1/2}$ and $\phi_{\rm last} = 208^{\circ}$. In practice, wPMLG^{xx}_{pp} is experimentally optimized by changing $\tau_{\rm p}$, while keeping the phase ramp final value of $\phi_{\rm last} = 208^{\circ}$. This optimization leads to a concurrent variation of the offset frequency, $v_{\rm off}$, and of the θ and ψ angles. Indeed, after optimization, the experimentally optimized $\tau_{\rm p}$ value tends to become shorter than its theoretical value [54], which corresponds to a θ angle smaller than $\theta_{\rm m}$ (Eqs. (1), (3)), and to a ψ angle smaller than 360° (Eq. (2)).

With TIMES and TIMES₀, the effective rotation is always kept equal to $\psi = 360^{\circ}$ by changing not only the length of the on-resonance irradiation, but also simultaneously the phase sweep value (Eq. (2)) to:

$$\phi_{\text{last}}(^{\circ}) = 360. \left(1 - \tau_p^2 v_{1p}^2\right)^{1/2}.$$
(4)

The length of sandwich pulses in TIMES is experimentally optimized, but the flip angle of these pulses is always found to be close to the θ value described with Eq. (3). These pulses hence align the *z* axis of the precession axis, tilted with the phase ramp, with the B_0 field. Under fast MAS, these two axes tend to be very close, and therefore the two sandwich pulses can be dropped, thus leading to the TIMES₀ sequence.

It is important to reduce experimentally the number of optimized parameters for quick, stable, and reproducible experimental setup. There are six experimentally adjustable parameters in TIMES: the lengths of sandwich pulses, τ_0 , of ramp pulses, τ_p , and of window, τ_w , as well as the amplitudes of rf fields during sandwich pulses, v_{10} , and ramp pulses, v_{1p} , and the resonance offset frequency Δv_0 . On the other hand, only four parameters (τ_p , v_{1p} , Δv_0 , τ_w) have to be optimized for wPMLG^{xx}_{pp} and TIMES₀ sequences.

As the interaction and rotating frames coincide every τ_c , the isotropic chemical shift scaling factor can be analytically calculated with first-order average Hamiltonian: Download English Version:

https://daneshyari.com/en/article/5406040

Download Persian Version:

https://daneshyari.com/article/5406040

Daneshyari.com