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Existing optimal control protocols for mitigating the effects of relaxation and/or RF inhomogeneity on
broadband pulse performance are extended to the more difficult problem of designing robust, refocused,
frequency selective excitation pulses. For the demanding case of T, and T equal to the pulse length, antic-
ipated signal losses can be significantly reduced while achieving nearly ideal frequency selectivity.
Improvements in performance are the result of allowing residual unrefocused magnetization after apply-
ing relaxation-compensated selective excitation by optimized pulses (RC-SEBOPs). We demonstrate
simple pulse sequence elements for eliminating this unwanted residual signal.
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1. Introduction

Frequency-selective pulses have widespread utility in magnetic
resonance and have motivated significant efforts towards their
design [1-47]. In many useful cases, the resulting methodologies
can achieve the best approximation to the ideal rectangular profile
for spin response as a function of frequency offset.

However, in all of these approaches to pulse design, perfor-
mance criteria that can be included in the design protocol are re-
stricted either by analytical procedures of highly specific scope or
by numerical methods that are limited by the efficiency of the opti-
mizations employed. As a result, pulse response is typically opti-
mized only for the nominal ideal RF pulse values. In addition,
although the length of pulses required for narrowband applications
can significantly reduce their effectiveness when relaxation times
are comparable to the pulse length [48,49], the solution to the
problem—selective pulses which are less sensitive to relaxation
effects—can also be demanding for standard design methods
[33,50-54].

To make these design challenges tractable, the space of possible
pulse shapes is often reduced by forcing the solution to be a mem-
ber of a particular family of functional forms (for example, finite
Fourier series). Thus, potentially, there are important solutions that
are missed.
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Over the past decade, we have shown optimal control theory to
be an efficient and powerful method that can be applied to a wide
range of challenging NMR pulse design problems without restrict-
ing the space of possible solutions [55-73]. It is capable of design-
ing broadband pulses [66] and selective pulses [74,75] that are
simultaneously tolerant to RF inhomogeneity and relaxation
effects, which we develop further in the present work.

2. Selective pulse design

Optimal control (including similar, related optimization proce-
dures) was originally introduced into magnetic resonance for the
design of band-selective pulses, primarily for imaging [76-82]. It
was quickly supplanted by the efficient Shinnar-LeRoux (SLR)
algorithm [17-21], which establishes a correspondence between
frequency-selective pulse design and digital filter design. There
are fast, non-iterative algorithms for the ideal filter and, hence,
the ideal pulse. Unfortunately, the algorithm does not accommo-
date additional criteria, such as tolerance to RF inhomogeneity
(included in some of the earliest optimal control-related ap-
proaches [76,80]) or relaxation effects. In addition, the most appli-
cable and widely used form of the algorithm derives pulses which
produce a specific linear phase dispersion in the spectral response.
Pulses producing no phase dispersion, suitable for spectroscopy,
are more problematic for the SLR algorithm.

We first provide an overview of well-known issues relevant to
selective pulse design, since there is considerably less freedom
in the choice of parameters compared to broadband pulses. For
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example, in designing broadband pulses, we have shown [60] there
is at best only a marginal relation between the maximum ampli-
tude, RFmax, Of a pulse and the achievable excitation or inversion
bandwidth, as long as the pulse length, T, is allowed to increase
sufficiently. Alternatively, increasing RFnyax for a given T, can im-
prove performance for a given bandwidth or increase the band-
width. There can also be innumerable broadband pulses that
provide approximately equal performance for a given RFmax, Tp,
and bandwidth.

Selective pulses are far more constrained, with a well-known
relation between the selective bandwidth and T, and much tighter
limits on the choice of RF,.x for a given product of bandwidth and
T, [21]. We provide only a simple overview of the optimal control
methodology, emphasizing the modifications necessary for the
present work. The basic algorithm for optimizing pulse perfor-
mance over a range of resonance offsets and RF inhomogeneity is
described fully in [57]. Details related to incorporating relaxation
[66] and specific dispersion in the phase of the final magnetization
[61,67,83], which we refer to as the phase slope, are provided in
the associated references.

2.1. Phase slope

Values of the phase slope, R, at each offset [67] characterize the
net phase dispersion that accumulates during a pulse of length T,
The phase slope is defined relative to the net precession of trans-
verse magnetization that would be produced solely by chemical-
shift evolution during the same time interval, T,. A pulse that
produces focused magnetization of fixed phase for all spins in the
offset range of interest would have constant R =0 (i.e., a self-refo-
cused pulse). Many selective pulses are symmetric, R = 1/2 pulses
[7,78,21,27,29,30]. The symmetry of the resulting pulse provides
an advantage in the development of various algorithms used in
selective pulse design, such as SLR, inverse scattering [22,27], poly-
chromatic [29], and stereographic projection [30]. In fact, the stan-
dard form of the SLR algorithm [21] can only generate linear phase
of this value. Sophisticated algorithms allowing for more general
phase in selective pulses are described in the literature [26,84,85],
but they are specific to this particular performance factor and can-
not include tolerance to variations in other experimentally impor-
tant parameters.

By contrast, including additional performance criteria, such as a
general phase response, is straightforward for optimal control.
Initial magnetization M(ty) is driven by the RF controls to a final
magnetization F that is defined for each resonance offset in the de-
sired range. To excite transverse magnetization of linear phase
slope R, we consider target states for each offset w in the excitation
bandwidth of the form [67]

F = [cos(), sin(¢), 0] (1)

Choosing ¢ = RwT, gives a linear phase slope, but any function can
be considered to define a useful target phase, such as quadratic or
higher order.

Selective excitation most simply requires changing the target to
F=10, 0, 1] for offsets outside the desired bandwidth. In principle,
this stopband includes an infinite range of frequencies that must
therefore be truncated at some chosen value. We found as a prac-
tical matter that choosing the stopband to be ~5 times the pass-
band width was sufficient to eliminate excitation at higher
frequencies for the pulse parameters used here. This value can eas-
ily be adjusted upwards if necessary, or, alternatively, high-fre-
quency components of the resulting pulse determined from
Fourier analysis can be deleted after verifying they have no signif-
icant effect on the passband excitation.

In addition, since the ideal rectangular offset response cannot
be excited by a finite-length pulse, there must be a transition

connecting the excitation frequencies to the nulled frequencies.
The selective response profile is typically defined in terms of
design parameters for finite impulse response (FIR) filters. An over-
view of the issues relevant to our optimal control implementation
follows.

2.2. Selective pulses as digital filters

For design conditions employing ideal RF in the absence of
relaxation, selective pulse performance is completely determined
by the desired passband width B, pulse length T, transition width
W joining the passband and stopband, and residual signal fluctua-
tion or ripple §; and &, about the ideal target amplitude for the
passband and stopband, respectively.

The passband frequency v, and stopband frequency v, are de-
fined where the magnitude of the magnetization response becomes
less than the associated fluctuations 1 — 6, and |d|, as illustrated in
Fig. 1 (adopted from Ref. [21]). The frequency where the amplitude
drops to one-half is approximately the average of these two fre-
quencies. The full width of the filter is defined as twice this value,
giving a bandwidth B=vs+v, and a fractional transition width
W =(vs — vp)/B.

More specifically (and again emphasizing the design conditions
stated at the beginning of the section), selective pulse performance
is constrained by relations for optimal FIR filters of the form

WT,B = f(81,2), (2)

in terms of an empirically derived function f{J4, ;) [86]. For a given
value of f= W T,B, smaller (larger) ¢; gives larger (smaller) d,. Alter-
natively, for fixed &, or fixed d,, values of f increase as J, or dy,
respectively, decrease. Flexibility in selective pulse design is thus
purchased at the cost of trade-offs among bandwidth, pulse length,
transition width, and ripple amplitudes. Choosing any four of the
set determines the fifth.

This relation appears to have been little used in the spectro-
scopic community. Although the precise form of the function f{5,
&) holds only for R=1/2 pulses, we have found it to be a useful
qualitative indicator for more general R. One important implication
is that pulse performance for a given absolute transition width
BW = v, — v, can be made independent of the passband width, B.
Fixed T, results in the same performance in terms of residual signal
(ripple) for different B as long as the transition width BW is con-
stant. This was observed empirically and noted in [47]. We thus
use Eq. [2] to inform our optimal control design.

Fig. 1. (Adapted from Ref. [21]) a finite length selective pulse can only approximate
the ideal rectangular frequency response. Residual signal or ripple amplitude in the
selected frequency spectrum (passband) is denoted by &, with §, representing the
ripple over the frequency range where the signal should be nulled (stopband). The
positive frequencies v, and v, define the passband and stopband, respectively. The
plotted response is symmetric about the zero frequency.
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