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A Bayesian approach to characterising multi-phase flows using magnetic
resonance: Application to bubble flows

D.J. Holland a,⇑, A. Blake b, A.B. Tayler a, A.J. Sederman a, L.F. Gladden a

a Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
b Microsoft Research Cambridge, 7 J.J. Thomson Avenue, Cambridge CB3 0FB, United Kingdom

a r t i c l e i n f o

Article history:
Received 20 August 2010
Revised 9 November 2010
Available online 17 December 2010

Keywords:
Bayesian analysis
Multi-phase flows
Sparse k-space
Bubble size distributions
Magnetic resonance

a b s t r a c t

Magnetic Resonance (MR) imaging is difficult to apply to multi-phase flows due to both the inherently
short T�2 characterising such systems and the relatively long time taken to acquire the data. We develop
a Bayesian MR approach for analysing data in k-space that eliminates the need for image acquisition,
thereby significantly extending the range of systems that can be studied. We demonstrate the technique
by measuring bubble size distributions in gas–liquid flows. The MR approach is compared with an optical
technique at a low gas fraction (�2%), before being applied to a system where the gas fraction is too high
for optical measurements (�15%).

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Magnetic resonance (MR) is being increasingly applied to study
multi-phase flows due to its ability to study optically opaque sys-
tems non-invasively. However, MR is an inherently slow technique
with conventional imaging approaches requiring several minutes
to acquire an image. A variety of fast imaging techniques are avail-
able [1–3], however these are still not quick or robust enough to
study multi-phase flows which are characterised by rapid temporal
variations, high shear rates and short relaxation times. This paper
presents a new method of characterising multi-phase flows by
re-posing the MR experiment as a Bayesian analysis problem that
does not require image acquisition. Such an approach is advanta-
geous for dynamic systems and could also be applied to low sensi-
tivity portable MR systems. The procedure is developed and
demonstrated for sizing gas bubbles in liquid flows.

Accurate measurement of bubble size is critical to improving
our understanding of fundamental physical phenomena in multi-
phase flows including turbulent drag, bubble coalescence, and heat
transfer. However, the sizing of bubbles, particularly in high volu-
metric gas fraction flows, remains challenging. Measurements are
currently made using optical, electrical, and light scattering tech-
niques, amongst others [4–6]; these techniques have their limita-
tions. Invasive techniques distort the local bubble size and shape.
Non-invasive techniques are limited to low gas fraction ([5%)

systems or near wall observations because of the increased light
scattering by dense bubble swarms and interference effects be-
tween neighbouring bubbles. The Bayesian approach developed
in this work is applicable to high gas fraction measurements (up
to �50%), and thus enables measurements of systems that were
previously impossible to study.

Bayesian analysis has previously been used in a variety of MR
applications [7–10]. It has been shown to improve the recovery
of an MR spectrum from noisy data [7] and to improve the accuracy
of flow measurements by enabling a sparse sampling procedure to
be used [9]. In this work we exploit both these advantages of
Bayesian analysis to enable measurements of the bubble size dis-
tribution in a dynamic system.

The approach used is derived from texture analysis concepts in
image processing [11] and extends previous approaches for analys-
ing MR data [12] to provide quantitative measurements in dy-
namic systems. The signal measured using MR, S(k), is governed
by:

SðkÞ ¼
Z

qðxÞ expði2pkxÞdx; ð1Þ

where q(x) defines the image (e.g. liquid map), x corresponds to the
spatial position and k ¼ cð2pÞ�1 R GxðtÞdt, where c is the gyromag-
netic ratio and Gx(t) describes the strength of the magnetic field gra-
dient in the x-direction as a function of time, t. Thus, the signal, S(k),
and image, q(x), are mutually conjugate Fourier pairs; hence by
controlling the gradient strength as a function of time it is possible
to sample any point in the spatial frequency domain of the image,
commonly referred to in MR literature as k-space [13].
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In conventional MR, an image of the system is obtained by mea-
suring a signal in k-space and then taking a discrete Fourier trans-
form of these data. This image would subsequently be analysed to
obtain the desired information, for example a bubble size distribu-
tion. However, multi-phase flows will often change over a time
scale less than that required to acquire an image, leading to mis-
registration artefacts in the image that make the subsequent anal-
ysis challenging, inaccurate and frequently impossible.

In the Bayesian approach proposed in this paper, a likelihood
function is developed relating the measured signal, S(k), to the
state of the system h (e.g. the bubble size distribution). This elim-
inates the conventional imaging requirement that the system is
stable for the duration of the acquisition, requiring only that h is
constant during the experiment. In this specific case of a bubble
size distribution, the size and location of individual bubbles will
change over a time scale of the order of a few milliseconds. How-
ever, the overall distribution of bubble sizes will remain stable over
time, as it is determined by only the fluid properties, system design
and operating conditions [14]. Therefore, a system that cannot be
studied by image acquisition can be studied using a Bayesian
methodology. The Bayesian approach reported here enables the
characterisation of the size distribution of approximately spherical
objects in multiphase systems. Therefore, in addition to the exam-
ple of bubble sizing reported here, this same analysis could be ap-
plied to, for example, emulsion droplet sizing, droplet sizing of
sprays, and the determination of pore size in porous media. The
present case study was selected because the measurement of bub-
ble size distributions in gas–liquid flows above a gas fraction of 5%
cannot be made by optical techniques and represents a significant
measurement challenge. We develop the technique and present re-
sults from numerical simulations of bubble size distributions with
both ideal and noisy data. Numerical simulations suggest that the
technique is applicable up to a gas fraction of 50%. We then com-
pare experimental measurements of the bubble size distribution
at low gas fraction (�2%) with an optical technique, before present-
ing measurements of the bubble size distribution at a gas fraction
of �15%, which is in excess of that which can be measured
optically.

2. Model development

In Bayesian analysis the state of a system h is inferred from a set
of observations ŷ from the posterior probability density function
pðhjŷÞ:

pðhjŷÞ / pðŷjhÞpðhÞ; ð2Þ

where pðŷjhÞ is the likelihood function and p(h) incorporates prior
knowledge. In this work we are attempting to determine the size
distribution of bubbles, which corresponds to h, given a set of mea-
surements, ŷ, of the signal intensity in k-space. In the approach de-
scribed here, we assume a functional form for the size distribution
and estimate the parameters of that distribution. Thus, if the radius
of an individual bubble is r, then we characterise the distribution of
r by modelling it using two parameters, the mean radius �r and a
standard deviation rr. These two parameters describe the state of
the system h, which we obtain as pðhjŷÞ. We present results for
two cases: (i) bubbles of a single size, i.e. rr = 0 and rj ¼ �r for all
bubbles j and (ii) a bubble size distribution given by a log-normal
distribution, where the log-normal distribution is defined by:

pðr;l;rlÞ ¼
1

rrl
ffiffiffiffiffiffiffi
2p
p exp �ðln r � lÞ2

2r2
l

 !
; ð3Þ

and the parameters l and rl uniquely define the mean

�r ¼ exp lþ r2
l=2

� �
and variance r2

r ¼ �r2 exp r2
l

� �
� 1

� �
of the dis-

tribution. We use a log-normal distribution as this is observed
empirically [4,5]. In each case, the calculated posterior distribution
characterises the probability distribution for the parameters �r and
rr.

The likelihood function is determined by considering how the
signal intensity varies in k-space given a particular distribution
of bubble sizes and bubble shape. We begin by formulating a 1D
image f(x) which comprises the projection of N bubbles onto the
x-axis. The projection of each individual bubble is defined by a
function h(r,x), where r is the characteristic size of the bubble
and x is the spatial coordinate. Then, defining the Fourier trans-
forms of f(x) and h(r,x) as F(k) and H(r,k), respectively, the signal
measured by MR obeys:

FðkÞ ¼
XN

j¼1

Hðrj; kÞ expð�i2pkxc;jÞ; ð4Þ

where xc,j is the location of the centre of the jth bubble and use has
been made of the linearity and shift invariance of the Fourier trans-
form. As an example, Fig. 1 shows (a) f(x) for a simulation of 30
identical spherical bubbles and (b) the corresponding magnitude
of F(k), the discrete Fourier transform of these data. Assuming
{xc,j} is independent and identically distributed, then for a given k,
the expected F(k) is 0, i.e. E(F(k)) = 0 and

EðjFðkÞj2Þ ¼ NEðjHðrj; kÞj2Þ: ð5Þ

If a signal is obtained from the magnitude of a sum of complex val-
ues, each of random phase, this signal will be described by the Ray-
leigh distribution [15], provided the number of values in the sum is
sufficiently large. Therefore, in the limit of large numbers (i.e. large
N), the likelihood function describing the magnitude of the signal at
any given k will be defined by a Rayleigh distribution:

pðjFðkÞjjkÞ ¼ jFðkÞj
kðkÞ2

exp � jFðkÞj
2

2kðkÞ2

 !
; ð6Þ

where k2 = E(jF(k)j2)/2. The value of N required for Eq. (6) to hold
will depend on the distribution of bubble sizes in the system. For
bubbles of a uniform size, EðjHðrj; kÞj2Þ ¼ jHð�r; kÞj2 and therefore
Eq. (6) holds for N P 2. For a bubble size distribution given by a
log-normal distribution the value of N required will depend on
the parameters of the distribution and an expression similar to
Eq. (6) can be derived numerically; for log-normal distributions
with rr < 0:5�r, numerical results show that Eq. (6) holds for realis-
tic experimental values of N (i.e. N P 6).

Eq. (6) defines the likelihood function for the signal as a function
of �r and rr. Therefore, if k2 is known for all �r and rr; pðhjŷÞ is obtained
from Eq. (2), and this can be used to estimate h � f�r;rrg which

Fig. 1. (a) Plot of the projection onto the x-axis of 30 spheres each of radius 2 mm
and (b) (�) the magnitude of jF(k)j and (—) E(jF(k)j) of the discrete Fourier transform
of the data shown in (a). The intensity on the vertical axis in (a) is proportional toR R

qðx; y; zÞdydz. The solid line in (b) is derived from Eqs. (6) and (7).
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