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A general mathematical basis is developed for computation of the pulsed-gradient spin-echo signal atten-
uated due to restricted diffusion in multilayered structures (e.g., multiple slabs, cylindrical or spherical
shells). Individual layers are characterized by (different) diffusion coefficients and relaxation times, while
boundaries between adjacent layers are characterized by (different) permeabilities. Arbitrary temporal
profile of the applied magnetic field can be incorporated. The signal is represented in a compact matrix
form and the explicit analytical formulas for the elements of the underlying matrices are derived. The
implemented algorithm is faster and much more accurate than classical techniques such as Monte Carlo
simulations or numerical resolutions of the Bloch-Torrey equation. The algorithm can be applied for
studying restricted diffusion in biological systems which exhibit a multilayered structure such as com-
posite tissues, axons and living cells.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A pulsed-gradient spin-echo (PGSE) technique is a non-invasive
experimental tool for studying diffusive processes in mineral por-
ous media and biological systems [1-4]. The past decade is marked
by a significant increase in spatial resolution, image quality and
acquisition rapidity that resulted in numerous clinical applications
such as brain or lung imaging [5-10]. In turn, the progress in the-
oretical understanding of restricted diffusion in such complex sys-
tems is less spectacular. Although the theory is well established for
few simple confining shapes (such as slab, cylinder and sphere)
[11], its extension to heterogeneous media is essentially an open
problem. Several phenomenological formulas (e.g., bi-exponential
fit, stretched-exponential fit, etc.) are therefore used for fitting
and interpreting measured signals in biological systems [12-18].
Physical and geometrical interpretation of fitting parameters, as
well as the respective roles of various attenuation mechanisms
(bulk and surface relaxation, permeation through boundaries,
etc.), are still poorly understood in general.

We propose a general mathematical description of restricted
diffusion in multilayered structures (Fig. 1), in which the Laplace
operator eigenfunctions are known in a closed analytical form:

e multiple slabs separated by parallel planes (e.g., a model of
composite or multilayered tissues);
o multiple cylindrical shells (e.g., a model of axons); and
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e multiple spherical shells (e.g., a rough model of a living cell in
which layers represent a nucleus, a cytoplasm, and an extracel-
lular space).

Pulsed-gradient encoding of any temporal profile, individual
bulk relaxivity and diffusivity for each layer, different permeabili-
ties between adjacent layers, and exchange with an exterior space
are rigorously included in this treatment. An efficient, accurate and
rapid numerical tool for computing the signal attenuation is de-
signed and implemented in Matlab. Since most computations are
performed analytically, this matrix formalism significantly outper-
forms classical numerical methods such as Monte Carlo
simulations.

The paper is organized as follows. Section 2 describes the math-
ematical basis of the spectral approach to restricted diffusion in
multilayered structures. Although the formulas may look cumber-
some and sophisticated, their practical implementation is straight-
forward. After all, restricted diffusion in multilayered structures is
a complex phenomenon which needs an adequate description. In
Section 2.1, the Bloch-Torrey equation is formulated for multilay-
ered structures and its physical interpretation is recalled. Sec-
tion 2.2 introduces the Laplace operator eigenfunctions. In
Section 2.3, the computation of the Laplace operator eigenvalues
is detailed. Section 2.4 summarizes the main steps of the matrix
formalism. A practical implementation for multiple slabs, cylindri-
cal and spherical shells is explained in Section 2.5. In Section 3, a
practical use of the matrix formalism is illustrated by several
examples. In particular, the role of the permeability of intermedi-
ate boundaries is investigated. Appendices describe the explicit
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Fig. 1. Two examples of multilayered structures: (a) multiple slabs (d = 1) and (b) multiple cylindrical shells (d = 2).

formulas for the elements of the governing matrices. This is the key
point for the performance of the matrix formalism.

2. Mathematical basis
2.1. Bloch-Torrey equation

We consider a multilayered domain Q = Q, U- - -U €,, composed
of ¢ layers @ ={reR’:r_; <|r| <r;}, with ro<r;<-<r,=R
(Fig. 1). Each layer €; is characterized by diffusion coefficient D;
and relaxation time T; (representing transverse spin-spin relaxa-
tion). The inner, outer and each intermediate boundary,
Ii={reR’:|r|=r} (i=0...¢), is characterized by permeability
W,. For such a composite system, the classical Bloch-Torrey equa-
tion becomes:

<% — DiA + iof (£)B(r) + T;1>m,-(r, H=0 (reQui=1...0),

0 g .
Di%mi(r, t) = —Di+1%mi+1(r7t) (reli=1...0-1),
Di%mi(r, t) = W,-[m,-ﬂ (l‘, t) — mi(l‘, l')} (l‘ € F,‘,l.: 1...0— 1),
Dga—anm[(r, t) = —Wmlg(l‘, t) (1‘ € F[),
D, gml (r,t) = —Womy(r,t) (rely),

on
(1)

where my(r,t) is the transverse magnetization inside the ith layer,
A =d?/0%3 + - - + 0% /9x3 is the d-dimensional Laplace operator act-
ing on r = (x4,...,X4),0/0n is the normal derivative on the boundary
pointing to the exterior of the domain, and w is the Larmor fre-
quency associated with an applied magnetic field of a given (dimen-
sionless) temporal profile f{t) and of spatial variation B(r).

The first equation states that the time evolution of the magne-
tization is caused by

e local random displacements of the spin-bearing particles, i.e.,
diffusion which is governed by the Laplace operator,

e encoding through the applied magnetic field, and

e bulk relaxations.

The second equation describes the conservation of the flux of
magnetization between adjacent layers (the sign minus accounts
for the opposite directions of two normal derivatives at the inter-
mediate boundary I';). The third equation accounts for the transfer
properties (permeabilities W;) of intermediate boundaries. It states
that the diffusive flux is created by the drop in magnetization be-
tween two layers. For biological samples, typical water permeabil-

ities are in the order of 107> m/s (e.g., for axons [19,20]). Finally,
the last two equations describe the flux conservation at the outer
and inner boundaries I', and Iy, respectively. If there is no inner
boundary (Fig. 1b), the last equation is replaced by the condition
of a regularity of m(r,t) at the origin.

The above mathematical description is approximate. The under-
lying assumptions are:

e All the intermediate boundaries are infinitely thin. When such
an approximation is not adequate, the frontier between two lay-
ers (e.g., a cellular membrane) can be modeled itself as an inter-
mediate layer, with an effective diffusion coefficient and
appropriate relaxation time.

o Although surface relaxation is formally neglected, it can be eas-
ily taken into account. For the outer and inner boundaries, the
transport coefficients W, and W, represent the losses of the
spin-bearing particles which leave the multilayered structure.
But the very same constants W, and W, may also account for
surface relaxation on the outer and inner boundaries. If surface
relaxation at intermediate boundaries is also relevant, these
infinitely thin boundaries can be replaced by additional inter-
mediate layers for which surface relaxation can be effectively
incorporated through the corresponding bulk relaxation times.

e The third equation relates the diffusive flux to the drop of mag-
netization between two layers. This is an effective model for
describing transfer properties of a membrane. Another model
relates the magnetizations at the edges of two layers by a linear
relation, namely, my(r,t) = wim;.((r,t) (as r € I';), with a dimen-
sionless constant w;. The approach we present can be easily
adapted to this model. At the same time, it is known that cellu-
lar membranes transfer species via different mechanisms (e.g.,
active transfer of some macromolecules [21,22]) which may
result in more sophisticated equations. This paper is focused
only on linear boundary conditions in Eq. (1).

e The Brownian dynamics of the spin-bearing particles is not
always valid for biological systems. For instance, the dynamics
of proteins and other macromolecules inside living cells is often
anomalous [23-26]. Anomalous diffusion or other intricate
dynamics are beyond the scope of the paper.

In what follows, we assume that a PGSE experiment is accu-
rately described by Eq. (1).

2.2. Laplace operator eigenfunctions

A solution of the Bloch-Torrey Eq. (1) can be written in terms of
the Laplace operator eigenfunctions [11,27,28]. For multilayered
structures, each eigenfunction u(r) satisfies the following
equations:
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