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a b s t r a c t

In the present work, the non-linear phase dispersion induced by slice selective frequency-swept pulses is
analyzed, in order to assess NMR signal attenuation due to molecular diffusion during such pulses. In par-
ticular, theoretical considerations show that diffusion-weighting can be calculated based on the non-lin-
ear phase spatial derivative (i.e. the phase gradient), and that the phase of B1 field at the instant of the flip
does not contribute to phase scrambling and diffusion-weighting, yielding a simple analytical expres-
sions. The theory is validated by confrontation with numerical simulations of the Bloch equations includ-
ing diffusion, performed for a pair of hyperbolic secant pulses and a pair of CHIRP pulses. The simple
though general conceptual framework developed here should be useful for the understanding and the
exact calculation of diffusion-weighting in NMR sequences using frequency-swept pulses.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Adiabatic pulses provide an efficient way to perform broadband
and homogeneous magnetization flip, even in the presence of
strong B1 inhomogeneities [1]. This property has for example been
exploited to perform slice or volume selection, such as in the LASER
spectroscopy sequence [2], in the Pseudo-LASER spectroscopic
imaging sequence [3] or in various imaging sequences [4–7].
Furthermore, trains of adiabatic pulses may be used to generate
contrasts based on relaxation in the rotating frame [8,9].

When applied in conjunction with a slice selection gradient, an
adiabatic pulse generates a non-linear phase throughout the se-
lected slice along the direction of the gradient. This is due to the
frequency-swept nature of adiabatic pulses, where the magnetiza-
tion is flipped when the frequency of the pulse is equal to the
Larmor frequency X. This phase can then be refocused by a second,
identical pulse [10,11], in order to prevent signal loss due to inco-
herent averaging throughout the slice. It has been argued that the
phase dispersion created by an adiabatic pulse might induce
diffusion-weighting. In their pioneer work [12], Sun and Bartha
proposed an expression for diffusion-weighting induced by trains
of hyperbolic secant pulses, assuming a quadratic phase dispersion
(such as induced by a CHIRP pulse [13]).

When ‘‘zooming” into the elementary events occurring during
frequency-swept pulses, two components can be identified in the

non-linear phase: the phase acquired in the slice selection gradi-
ent, depending on the gradient strength and on the instant of the
flip tX, and the phase induced by the B1 field orientation itself,
depending on the B1 phase at the instant of the flip. In the present
work, we propose to revisit the origins of the non-linear phase dis-
persion to assess if both the phase variation of the B1 field during
the sweep and the phase acquired in the slice selection gradient
should be explicitly considered when calculating diffusion-weight-
ing. To address these questions, a formalism is proposed that
allows general calculation of diffusion-weighting when fre-
quency-swept pulses are used. An analytical expression is then
derived for diffusion-weighting induced by a pair of slice selective
hyperbolic secant pulses and CHIRP pulses. These expressions are
validated by numerical simulation of the Bloch equations including
diffusion.

2. Theory

2.1. The phase induced during a frequency-swept pulse

An exact evaluation of the rotation induced by an arbitrary
pulse requires composing rotation operators over suitably small
time intervals to account for elementary rotations around a step-
wise constant effective field, rapidly leading to complex analytical
expressions. However, during a frequency-swept pulse, the magne-
tization can be assumed to be flipped around the B1 field at the in-
stant tX when the frequency of the pulse is equal to its Larmor
frequency X [3,6,7,14]. This approximation provides a simple yet
accurate description of magnetization’s behavior during the pulse,
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which was verified by many numerical simulations and experi-
ments [3,6,7,14]. It allows for example the calculation of the mag-
netization’s phase during the pulse [3,6,7,14]. Let us consider for
example a frequency-swept pulse of duration Tp performing
slice-selective refocusing. Considering a gradient of magnitude
Gslice oriented along x, the phase evolution for magnetization with
Larmor frequency X = cGslicex and flipped at tX is given by [3,7], UB1

being the phase of the B1 field (Fig. 1):

0 < t < tX : /ðx; tÞ ¼ cGslicetx

tX < t < Tp : /ðx; tÞ ¼ 2/B1ðtXÞ þ cGsliceðt � 2tXÞx
ð1Þ

This phase dispersion can then be refocused by a second, iden-
tical slice selective pulse. Looking at Eq. (1), two components can
be identified in the non-linear phase: the phase acquired in the
slice selection gradient, depending on the gradient strength and
on the instant of the flip tX, and the phase induced by the B1 field
orientation itself, depending on the B1 phase at the instant of the
flip. Since diffusion-weighting is based on phase scrambling, both
components may a priori contribute to signal attenuation. Without
further analysis, the effect of the B1 phase cannot be taken into ac-
count. We will now try to clarify how this B1 phase contributes to
diffusion-weighting induced by frequency-swept pulses.

2.2. Diffusion in an arbitrary phase gradient

The usual definition of k(t) as the moment of a B0 gradient G
will be used:

kðtÞ ¼ c
Z t

0
Gðt0Þdt0 ð2Þ

Using this notation, the signal attenuation due to diffusion dur-
ing duration t in B0 gradients is (D being the diffusion tensor):

AðtÞ ¼ exp �
Z t

0
kTðuÞ � D� kðuÞdu

� �
ð3Þ

It is important to note that the phase induced by a gradient along x
is U(x, t) = kx(t)x, kx(t) being therefore the phase gradient oU/ox
(independent of x). Starting from here, let us consider now a more
general case, where the phase U(x, t) is not solely induced by B0 gra-
dients, but by any other phenomenon, such as frequency-swept
pulses. U(x, t) is now an arbitrary function of x and t, with oU/ox a pri-
ori depending on x and t. However, there is still a strong physical
analogy between this arbitrary phase gradient oU/ox and a B0 gradi-
ent moment kx along x. Indeed, the effect of diffusion will be to
scramble phase and induce signal loss, as induced by a B0 gradient.
Using the gradient operator ~r, the phase gradient is given by:

~r/ðr; tÞ ¼ @/
@x ðr; tÞ

@/
@y ðr; tÞ

@/
@z ðr; tÞ

� �T
ð4Þ

It is demonstrated in Appendix A that, since U can generally be
considered locally linear (i.e. the phase gradient oU/ox is constant)
over the distance experienced by diffusing spins during the se-
quence (see Appendix B for the validity of this assumption), the
attenuation due to diffusion is given by:

Aðr; tÞ ¼ exp �
Z t

0

~r/Tðr;uÞ � D� ~r/ðr;uÞdu
� �

ð5Þ

Therefore, there is a formal analogy between k and ~r/ regard-
ing diffusion-weighting. However, due to its more general form
compared to Eq. (3), Eq. (5) can now be used to rigorously evaluate
the effect of the phase induced by a frequency-swept pulse on dif-
fusion-weighting.

2.3. Phase gradient induced during a frequency-swept pulse

The phase gradient evolution during the pulse is given by differ-
entiating Eq. (1):

0 < t < tX : @/
@x ¼ cGslicet ¼ ksliceðtÞ

tX < t < Tp : @/
@x ¼ 2

@/B1

@t
ðtXÞ

@tX

@x
� 2cGslicex

@tX

@x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kB1

þ cGsliceðt � 2tXÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ksliceðtÞ

ð6Þ

In Eq. (6) two components can be identified: the usual slice gra-
dient moment kslice (whose sign is changed at tX by the 180� rota-
tion), and a ‘‘radiofrequency” term kB1 including B1 contribution.
However, during frequency-swept pulses, the magnetization is
flipped when the pulse frequency is equal to X, which can be writ-
ten as oUB1/ot(tX) = cGslicex. Inserting in Eq. (6) yields the following
simplification:

0 < t < tX :
@/
@x
¼ cGslicet ¼ ksliceðtÞ

tX < t < Tp :
@/
@x
¼ cGsliceðt � 2tXÞ ¼ ksliceðtÞ

ð7Þ

In the end, the contribution of the B1 field orientation is can-
celled out when calculating the spatial derivative of the non-linear
phase, so that only the phase induced by the gradient needs to be
considered for diffusion-weighting. In short, when considering dif-
fusion-weighting, the effect of a 180� frequency-swept pulse is
simply to change the sign of gradient moment k at the instant tX.

Note that a similar conclusion is reached if the pulse induces a
90� excitation rather than a 180� refocusing. Indeed, the phase is
simply zero before the excitation (0 < t < tX), then the magnetiza-
tion is instantaneously flipped around B1 and starts precessing
for t > tX [6]:

0 < t < tX : /ðx; tÞ ¼ 0

tX < t < Tp : /ðx; tÞ ¼ /B1ðtXÞ þ
p
2
þ cGsliceðt � tXÞx

ð8Þ

In that case the phase gradient simplifies as well to:

0 < t < tX :
@/
@x
¼ 0

tX < t < Tp :
@/
@x
¼ cGsliceðt � tXÞ ¼ ksliceðtÞ

ð9Þ

3. Methods

3.1. Analytical calculation of diffusion-weighting during a pair of slice-
selective frequency-swept pulses

Following the analysis detailed in the Theory section, diffusion-
weighting induced during a pair of slice selective frequency-swept

Fig. 1. Evolution of the transverse magnetization M at the instant of the flip tX
during a 180� frequency-swept pulse. M is considered to be instantaneously flipped
by 180� around B1.
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