FI SEVIER Contents lists available at ScienceDirect ## Journal of Magnetic Resonance journal homepage: www.elsevier.com/locate/jmr # Study of nuclear quadrupole interactions and quadrupole Raman processes of 69 Ga and 71 Ga in a β -Ga $_2$ O $_3$:Cr $^{3+}$ single crystal Tae Ho Yeom a, Ae Ran Lim b,* #### ARTICLE INFO Article history: Received 15 April 2009 Revised 14 June 2009 Available online 6 August 2009 Keywords: Nuclear magnetic resonance Crystal growth Optical materials Relaxation times #### ABSTRACT Nuclear magnetic resonance (NMR) data and the spin–lattice relaxation times, T_1 , of ⁶⁹Ga and ⁷¹Ga nuclei in a β -Ga₂O₃:Cr³⁺ single crystal were obtained using FT NMR spectrometry. Four sets of NMR spectra for ⁶⁹Ga (I=3/2) and ⁷¹Ga (I=3/2) were obtained in the crystallographic planes. The ⁶⁹Ga and ⁷¹Ga nuclei each had two chemically inequivalent Ga_I and Ga_{II} centers. Each of the ⁶⁹Ga and ⁷¹Ga isotopes yielded two different central NMR resonance lines originating from Ga_I and Ga_{II} sites. The nuclear quadrupole coupling constants and asymmetry parameters of ⁶⁹Ga_{II}, ⁶⁹Ga_{II}, ⁷¹Ga_I, and ⁷¹Ga_{II} centers in a β -Ga₂O₃:Cr³⁺ crystal were obtained. Analysis of the EFG tensor principal axes (PAs) for Ga nuclei and the ZFS tensor PAs for the Cr³⁺ ion confirmed that the Cr³⁺ paramagnetic impurity ion substitutes for the Ga³⁺ ion in the oxygen octahedron. In addition, the temperature dependencies of the ⁶⁹Ga and ⁷¹Ga relaxation rates were consistent with Raman processes, as $T_1^{-1} \propto T^2$. Even though the Cr³⁺ impurities are paramagnetic, the relaxations were dominated by electric quadrupole interactions of the nuclear spins in the temperature range investigated. © 2009 Elsevier Inc. All rights reserved. #### 1. Introduction Transparent conducting oxides (TCOs) are key materials in state-of-the-art optoelectronics. TCOs are used in a variety of devices including flat-panel displays and solar energy conversion devices. Among the TCOs reported to date, gallium oxide (β-Ga₂O₃) has the widest band gap energy of 4.8 eV [1], is transparent from the visible into the UV region [2], and demonstrates thermal stability because of a high melting point [3]. Interest in β-Ga₂O₃ continues, because it is a relatively new material with a number of potential applications in optoelectronics and gas sensing. β-Ga₂O₃ may also be used as a host material in electroluminescent devices [4,5]. β -Ga₂O₃ is intrinsically an insulator with a band gap of 4.8 eV. The material becomes n-type semiconducting when synthesized under reducing conditions. The n-type semiconductivity is known to arise because of a slight oxygen deficit in the crystal lattice [6]. The electrical conductivity of β-Ga₂O₃ at elevated temperatures is markedly and reversibly altered in the presence of oxidizing or reducing gases. β-Ga₂O₃ has a monoclinic crystal structure and belongs to the space group C_{2n}^3 –C2/m with lattice parameters a = 1.2214 nm, b = 0.30371 nm, and c = 0.57981 nm, and β = 103.83° [7–9]. Melting points of T_m = 1740 °C [7,8] or 1807 °C [10] have been reported in the literature. The unit cell contains four Ga_2O_3 molecules. Two chemically distinguishable cationic sites are coordinated either tetrahedrally or octahedrally with oxygen ions. The crystal structure is a double chain of GaO_6 octahedra, Ga_I , arranged parallel to the b-axis of the lattice, which is connected by GaO_4 tetrahedra, Ga_{II} , as shown in Fig. 1. The crystal has two cleavage planes, perpendicular to the a- and c-axes, respectively. A nuclear magnetic resonance (NMR) study of 69 Ga and 71 Ga nuclei in pure β -Ga $_2$ O $_3$ single crystals grown by the Verneuil method [11] has been performed [12]. These studies, which disclosed all 69 Ga and 71 Ga resonances, yielded eight sets of NMR parameters; these eight sets of resonance lines originated from a twin structure. Also, electron paramagnetic resonance (EPR) studies of Cr^{3+} [13,14] in β -Ga $_2$ O $_3$ single crystals have been reported. The spin–lattice relaxation times of nuclei in a crystal reflect crystal dynamics, such as nucleus–phonon interactions, and indicate how easily the excited state energy of the nuclear system can be transferred into the lattice. In the present study, the behavior of Ga in a β -Ga₂O₃:Cr³⁺ single crystal was explored using NMR and relaxation time measurements. To obtain detailed information on crystal dynamics, it was necessary to measure spin–lattice relaxation times, T_1 , of constituent ⁶⁹Ga and ⁷¹Ga nuclei. In the present study, the NMR properties of 69 Ga and 71 Ga in a β -Ga₂O₃:Cr³⁺ single crystal were investigated using a Pulse NMR spectrometer. Four sets of Ga NMR spectra were obtained in the crystallographic planes at room temperature and analyzed using ^a Division of Applied Science, Cheongju University, Cheongju 360-764, Republic of Korea ^b Department of Science Education, Jeonju University, Jeonju 560-759, Republic of Korea ^{*} Corresponding author. Fax: +82 (0)63 220 2053. E-mail addresses: aeranlim@hanmail.net, arlim@jj.ac.kr (A.R. Lim). **Fig. 1.** Projection of the β- Ga_2O_3 single crystal unit cell structure onto the *ca*-plane. the Zeeman and nuclear quadrupole Hamiltonians. The quadrupole coupling constants (e^2qQ/h), asymmetry parameters (η), and directions of the principal tensor axes of electric field gradients (EFGs) of the 69 Ga and 71 Ga centers in the β -Ga $_2$ O $_3$:Cr $^{3+}$ single crystal were determined and compared with those of previous reports. In addition, the spin–lattice relaxation times, T_1 , of both 69 Ga and 71 Ga nuclei were investigated in detail as a function of temperature. This work will enhance understanding of nuclear relaxation processes in the crystal. #### 2. Experimental Single crystals of β -Ga₂O₃ doped with Cr³⁺ (0.05 mol%) were grown using a floating zone method [14]. Crystallographic axes were determined by the X-ray Laue approach. No twin domain structure was found by X-ray, NMR, or EPR. Ga NMR measurements were conducted using a Bruker FT NMR spectrometer (MSL 200 model) of the Korea Basic Science Institute. The static magnetic field was 4.7 T and central rf frequencies for ⁶⁹Ga and ⁷¹Ga nuclei were set at $\omega_0/2\pi = 48.0372 \,\text{MHz}$ and $\omega_0/2\pi =$ 61.0296 MHz, respectively. The free induction decay (FID) of ⁶⁹Ga and ⁷¹Ga NMR was recorded with a single pulse sequence, 5000 scans, and a repetition time of 0.5 s on each crystallographic plane. A pulse length of 1 μ s (90° pulse) was used. For T_1 measurements, a $\pi - t - \pi/2$ inversion recovery pulse sequence was employed. The width of the π pulse was 2 μ s for both ⁶⁹Ga and ⁷¹Ga. Sample temperatures were maintained at constant values by controlling helium flow and heater current, with an accuracy of ±0.5 °C. Typical NMR spectra of ^{69}Ga and ^{71}Ga in the $\beta\text{-}Ga_2O_3\text{:}Cr^{3+}$ crystal in an arbitrary external magnetic field at room temperature are shown in Fig. 2(a) and (b), respectively. These spectra were obtained by Fourier transforming the FID of Ga (I=3/2) NMR. Only central resonance lines are observed because of a large quadrupole interaction. The spectra of each of the ^{69}Ga and ^{71}Ga nuclei consist of two sets of resonance lines, denoted as Ga_I at the six-oxygen octahedron (Ga_I center) and Ga_{II} at the four-oxygen tetrahedron (Ga_{II} center). The resonance lines from ^{69}Ga at the octahedral site and ^{69}Ga at the tetrahedral site are designated the $^{69}Ga_I$ center and the $^{69}Ga_{II}$ center, respectively. The resonance lines from ^{71}Ga at the octahedral site and ^{71}Ga at the tetrahedral site are termed the $^{71}Ga_I$ center and the $^{71}Ga_{II}$ center, respectively. The central line widths of the $^{69}Ga_I$, $^{69}Ga_{II}$, $^{71}Ga_I$, and $^{71}Ga_{II}$ centers were ($\Delta\nu$)_{FWHM} \approx 5.0–5.8 kHz, depending on the direction of the applied field with respect to the crystallographic axes. We defined five directions as follows: a, b, c, a^* , and c^* . The first three directions are those of the principal crystallographic axes, and the last two are perpendicular to the bc-plane and ab-plane, **Fig. 2.** Typical NMR absorption spectra of (a) 69 Ga and (b) 71 Ga nuclei in a β-Ga₂O₃:Cr³⁺ single crystal at room temperature. respectively. The resonance absorption spectra of 69 Ga and 71 Ga nuclei in the β -Ga $_2$ O $_3$:Cr $^{3+}$ crystal were observed at intervals of 10° as the crystal was rotated through 180° . The experimental resonance frequencies of 69 Ga and 71 Ga nuclei measured on the crystallographic ba^*b - and bc^*b -planes are plotted in Figs. 3 and 4 as closed circles and closed rectangles, respectively, together with other data calculated as described below. The resonance frequencies changed during crystal rotation with respect to the magnetic field. To obtain the actual Ga NMR frequencies in Figs. 3 and 4, 48.0372 MHz and 61.0294 MHz should be added to the frequencies in the graphs for 69 Ga and 71 Ga, respectively. The rotational angles in Figs. 3 and 4 are with reference to the crystallographic b-axis. We tried to adjust crystal mounting so that NMR spectral extrema along the b-axis in the ba^*b - and bc^*b -planes coincided. The crystallographic data show that the b-axis is parallel to the monoclinic direction of the crystal, consistent with previous reports [3,9]. #### 3. Analysis and discussion #### 3.1. e^2qQ/h and η of ^{69}Ga and ^{71}Ga nuclei NMR spectra of 69 Ga (I = 3/2, natural abundance 60.4%) and 71 Ga (I = 3/2, natural abundance 39.6%) centers were analyzed with the ### Download English Version: # https://daneshyari.com/en/article/5406804 Download Persian Version: https://daneshyari.com/article/5406804 <u>Daneshyari.com</u>