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a b s t r a c t

MRI is a powerful technique for clinical diagnosis and materials characterization. Images are acquired in a
homogeneous static magnetic field much higher than the fields generated across the field of view by the
spatially encoding field gradients. Without such a high field, the concomitant components of the field
gradient dictated by Maxwell’s equations lead to severe distortions that make imaging impossible with
conventional MRI encoding. In this paper, we present a distortion-free image of a phantom acquired with
a fundamentally different methodology in which the applied static field approaches zero. Our technique
involves encoding with pulses of uniform and gradient field, and acquiring the magnetic field signals with
a SQUID. The method can be extended to weak ambient fields, potentially enabling imaging in the Earth’s
field without cancellation coils or shielding. Other potential applications include quantum information
processing and fundamental studies of long-range ferromagnetic interactions.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In MRI, the Larmor precession frequency x(x, y, z) = cB(x, y, z) of
the proton spins in the position-dependent magnetic field B(x, y, z)
frequency- and phase-encodes the proton density distribution into
a magnetic signal that is subsequently decoded to form an image
[1] (c is the magnetogyric ratio). In clinical MRI machines [1] the
strength of the applied homogeneous static magnetic field B0 = B0 ẑ
is typically 1.5 T. There has been recent interest, however, in systems
operating in magnetic fields of the order of 10�4 T (for example
[2–7]), where T1-weighted contrast is significantly enhanced [5]
(T1 is the longitudinal relaxation time). The loss of polarization is
compensated—at least in part—by prepolarizing [8] the spins at a
much higher field, or by hyperpolarization techniques using lasers
[9], dynamic nuclear polarization [10,11] or parahydrogen-induced
polarization [12]. As the frequency is lowered, the loss of signal
amplitude inherent in Faraday-Law detection is mitigated by detect-
ing the nuclear magnetization with either a Superconducting QUan-

tum Interference Device (SQUID) [13] or an atomic magnetometer
[14], both of which respond to the magnetic flux itself, rather than
its time rate of change. Regardless of the magnitude of B0, all cur-
rently used imaging processes involve the superposition of magnetic
field gradients on a static field to impose spatial variations of the to-
tal field across the subject or sample. In the zero static field regime
reported here, conventional MRI gradients are unable to encode
the spins along a given direction and Fourier encoding breaks down.

2. Theory

In conventional MRI techniques, the applied magnetic field gra-
dients are assumed to be linear and unidirectional so that the field
due to gradients is given by B(x, y, z) = (Gxx + Gyy + Gzz) ẑ, where
Gx = oBz/ox, Gy = oBz/oy, and Gz = oBz/oz are constants [1]. As an
example, B(x, y, z) = Gzz ẑ is shown in Fig. 1a. In reality, however,
such idealized gradients are forbidden by the Maxwell equations
divB = curlB = 0 for any time-independent magnetic field B in free
space. In fact, any gradient must be accompanied by concomitant
gradients in at least one additional direction, as illustrated in
Fig. 1b. At very low static fields the undesired gradient components
perpendicular to B0 induce severe image distortions [15–17]. The
degree of distortion is characterized by a parameter e = GL/B0,
where G is the magnitude of the field gradient and L is the image
field of view (FOV) [17]. When e << 1, the gradient fields can be
approximated as unidirectional, greatly simplifying image encod-
ing and reconstruction and leading to negligible image distortion.
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This ‘‘truncation” of the concomitant fields forms the basis of
nearly all MRI techniques used today including projection recon-
struction and Fourier imaging [1].

Several approaches have been proposed for imaging in the
regime e >> 1 where conventional techniques fail [18–20]. Our
experiment relies on the fact that, for very small angles, the preces-
sion of spins about an arbitrary field B can be represented by the
sum of the precessions about each component of B [18]. After such
a precession, the magnetization components that have evolved in
the concomitant field can be reversed while leaving the desired
unidirectional encoded component unchanged, an example of an
average Hamiltonian [21]. Fig. 2a shows the pulse sequence for
two-dimensional imaging in the limit of zero static field, and
Fig. 2b and c depicts the classical evolution of spins at (y0, z0) sub-
jected to this sequence. The proton spins are first polarized along
the x-axis by a large field Bp which is turned off nonadiabatically
[11] at time t = 0 (point A in Fig. 2a–c). The gradient field with
the approximate form (cross terms have been neglected)

Bðy; zÞ ¼ ð@By=@yÞy ŷþ ð@Bz=@zÞz ẑ ð1Þ

is turned on, and subsequently turned off nonadiabatically at time s
(point B). During this time interval, the spin precesses about B(y0, z0).
The time s is chosen to satisfy the requirement s << 1/cGzL. Conse-
quently, the precession during the interval s is small, and we can
treat it as the sum of precessions around ẑ and ŷ: dz = c(oBz/oz)z0s
around ẑ (Fig. 2b) and dy = c(oBy/oy)y0s around ŷ (Fig. 2c). After
the gradient pulse, a p pulse of uniform field Dp is applied along
the z-axis with amplitude and duration adjusted to produce a pre-
cession angle of p around ẑ. This pulse flips the spin to the point
C in Fig. 2b and c. Subsequently, a second gradient pulse brings
the spin to D, and a second p pulse to E. This sequence of pulses pro-
duces a net precession of the spin about Bz, but no net precession
about By. Thus, the two p pulses average out the components of
field perpendicular to ẑ, leaving an effectively unidirectional gradi-
ent field Beff(y, z) = Gzz ẑ.

To implement this sequence, it is convenient to define a ‘‘pulse
unit” consisting of two gradient pulses and two p pulses. Clearly,
the addition of subsequent pulse units increases the angle of pre-
cession about ẑ. After n pulse units, the gradient has been applied
for a total time tn = 2ns. Data are acquired at discrete values of k,
namely

kðtnÞ ¼ c
Z tn

0
GzðtÞdt; ð2Þ

using point-by-point detection in which each point in k-space is
acquired in a separate experiment. After the final pulse unit, a small
measurement field Bm is turned on along the z-axis and the NMR
signal from precession about this field is detected (Fig. 2d). The Fou-
rier transform of this real-valued signal produces a complex-valued

peak in frequency space, yielding the real and imaginary parts of the
signal at k(2ns). After completing the acquisition, the k-space pro-
jection is Fourier transformed to obtain a one-dimensional, real-
space projection of the sample. Subsequently, we rotate the sample
through an angle h (<<p) and acquire another projection; the proce-
dure is repeated until the range from 0� to 180� is covered. The
image is reconstructed using filtered back-projection [1].

3. Experimental methods

The experimental configuration is shown schematically in
Fig. 3. A double-walled Pyrex vacuum vessel is immersed in liquid
helium contained in a dewar surrounded with a single-layer mu-
metal shield to attenuate external magnetic fields. A superconduc-
ting lead shield inside the dewar stabilizes the residual magnetic
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Fig. 1. Idealized and achievable magnetic field gradients. (a) Idealized gradient field
B = (@Bz/@z)z ẑ. Such a field violates Maxwell’s equations. (b) Example of a realizable
gradient field in the y–z plane of the form B(y, z) = (@By/@y)y ŷ + (@Bz/@z)z ẑ. Lengths
of vectors represent relative field strengths.
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Fig. 2. Protocol for MRI in zero static field. (a) Pulse sequence vs. time. (b and c)
Progression of the spin vector at times t = 0 (A), s (B), 2s (C), 3s (D) and 4s (E) about
(b) z-axis and (c) y-axis. (d) Pulse sequence used for the zero-field MRI experiment
differs from that in b in two respects. First, after the final pulse pair, a gradient pulse
was applied for a time s/2; this pulse corrects higher order errors [18,19]. Second, to
ensure that the important k = 0 point was included, the gradient was inverted in the
first pulse unit, so that the first point in k-space was k(5s/2) = �(3s/2)cGz. All
subsequent gradient pulses have positive polarity; for example, the second k-space
point was k(9s/2) = (s/2)cGz. Note that the measurement field Bm is not applied
during encoding pulses; it is used solely for point-by-point k-space acquisition,
enabling quadrature detection with a single sensor.
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