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a b s t r a c t

Accurate determination of 1H NMR signal intensities is useful for quantitative analysis of the hydrogen
content and also to determine the relative peak intensity ratios in different application scenarios. To this
end we have investigated the reliability and sources of intensity errors in 1H solid-state MAS NMR. If suf-
ficient resolution can be achieved by very high spinning speeds and high magnetic fields, quantification is
straight forward. However, for poorly resolved spectra we show that small phase errors add a consider-
able amount of uncertainty. An analytical expression for the phase induced intensity-errors allowed us to
suggest a robust and reliable recipe which is based on a combination of the spin-echo experiment, an
extrapolation technique and a deconvolution algorithm which includes fitting of the signal phase. It sig-
nificantly reduces errors caused by phase distortions, homonuclear dipolar dephasing, the receiver dead
time delay and baseline rolling. The method was validated experimentally on samples with strong homo-
nuclear dipolar interactions.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

One of the attractive features of NMR is that signals are propor-
tional to the number of detected spins, which allows to perform
quantitative analysis by NMR (qNMR). Unlike ordinary chemical
analysis by other chemical or physical methods NMR not only al-
lows to determine the total amount of an NMR active isotope but
also its amount in different chemical environments.

Since qNMR is well established in liquid-state NMR [1,2] here
we focus on quantification of solid-state NMR spectra. Under typ-
ical conditions the sensitivity of the NMR experiment is rather lim-
ited which does not make NMR a likely candidate for trace analysis
where the analyte is below 1% in concentration. Applications of
solid-state qNMR are wide spread too, covering different areas
as, for example pharmaceutical formulation [3,4], cement base
materials [5,6], drugs [7–9], coals [10] or amorphous materials
[11] and different nuclei like 13C [3,9,12–14], 29Si [13], 119Sn [13]
and 23Na [15]. Interestingly methods based on 13C-CP-MAS NMR
have proved to be quantifiable for organic matter [13].

A particularly tempting target/analyte for quantification are
hydrogen atoms. In solids the hydrogen content is usually quanti-
fied by combustion analysis [16] which gives reliable results in
many cases. However, 1H solid-state NMR is a very sensitive probe
and the resolution has improved significantly even in single-pulse

excitation (SPE) experiments with the advent of very fast magic-
angle-spinning probes [17]. Moreover, 1H qNMR allows to distinguish
between chemically relevant hydrogen and hydrogen coming from
impurities (e.g. laboratory grease) and works even in cases where
simple combustion analysis fails because of the stability of the
samples as in case of ceramics or some inorganic solids. 1H qNMR
even complements X-ray diffraction because NH and O fragments
can hardly be distinguished from one another in the diffraction
pattern, while hydrogen in hydrogen-bonds often results in excep-
tional chemical shift values (10–18 ppm [18–21]) which helps
spectral resolution and assignment in the NMR spectrum.

Systematic studies in solid-state qNMR have highlighted differ-
ent sources of errors, for example repetition delays (related to
spin–lattice relaxation) [3,9], pulse-length effects [9], spectrometer
stability issues [15], sample preparation, quantitative analysis with
internal or external reference [2,3,14,15] and packing effects of the
material in the MAS rotor [14,15], which lead to false intensities
when excited by inhomogeneous radio-frequency fields. An
exhaustive protocol for solid-state qNMR has recently been pub-
lished [9].

As for other analytical methods also in qNMR many of the above
mentioned problems can be circumvented by quantification rela-
tive to an internal reference [2,3], in contrast to quantification to
an external reference, which critically depends on the stability of
the spectrometer sensitivity constant. For this purpose the to-
be-analyzed sample is mixed with a known reference sample of
high purity (internal reference) where the mass ratio, reference
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mass mref to analyzed sample mass msample, is known. The area be-
low a peak a is proportional to the number of nuclei detected by
NMR. Consequently, the ratio of peak areas is proportional to the
ratio of the number of detected nuclei nnuc in mole in the analyte
and the reference sample in the ideal case. Because the molar mass
and the number of detected nuclei per mole xref of the reference
sample is known, the ratio nnuc;analyte

nnuc;ref
may be rewritten in the follow-

ing form.

aanalyte

aref
¼ nnuc;analyte

nnuc;ref
¼ nnuc;analyte

nref xref
¼ nnuc;analyte

mref =Mref xref
ð1Þ

Variations in natural abundance of the detected isotope have
been neglected for simplicity. The result of a quantification is typ-
ically given in mole analyte per mass nnuc;analyte

msample
. Its calculation from

Eq. (1) is straight forward. In our experience the usage of an inter-
nal reference improves the relative error of nnuc;analyte

msample
from about 30%

for quantification to an external reference to below 10% for spin-1/2
nuclei other than 19F and 1H (results not shown).

Because our first results of solid-state 1H qNMR on amorphous
samples were disappointing, here we present an analysis of possi-
ble errors and an improved protocol. Our hypothesis is that the
combination of receiver dead time delay, homonuclear dipolar
dephasing and baseline distortions leads to frequency dependent
phase shifts of the signal which cause significant errors in qNMR
with internal references. To test the hypothesis we derive an ana-
lytical expression for the relative error of the peak area ratio of two
dephased peaks of Lorentzian lineshape. We then propose a proto-
col based on an extrapolation approach and the Hahn echo [22]
which avoids the receiver dead time and accounts for intensity
losses through homonuclear dipolar dephasing and transversal
relaxation. Finally, the protocol is validated for a sample with
strong 1H–1H magnetic dipole–dipole couplings at low magnetic
fields and moderate sample spinning frequencies and compared
to data obtained at medium magnetic fields and very high sample
spinning frequencies.

2. Theory

The hypothesis of this contribution is that even when following
the protocol presented in Ref. [9,14] phase errors may distort the
lineshape of a neighboring peak to such an extent that in case of
broad, poorly resolved peaks a significant error in the determined
peak area ratio may result. A visual presentation of the idea is pre-
sented in Fig. 1. A small phase error will cause an admixture of dis-

persive lineshape of peak A to peak B so that amplitude of peak B is
virtually decreased while in reverse peak B adds a bit of intensity
to peak A. We conclude that the resulting error in peak ratio r de-
pends on the signal phase / and may be positive or negative. Be-
cause dispersive lineshapes have a much slower decaying
behavior away from the center frequency than their absorptive
counterparts, it is interesting to ask in which cases this mechanism
is relevant. In the following we derive an estimate of this error
based on Lorentzian lineshapes.

To derive a simple analytical expression of the relative error Dr
r

of the peak ratio r which results from a dephased spectrum of
two peak A and B, we need to make a number of simplifying
assumptions. We assume the two peaks can be described as
Lorentzian functions with the parameters integrated peak area a,
linewidth (full width at half height in Hz) ki and center frequency
mi for peak i. The real part of complex Lorentzian [23]
Liðm; mi; ki; ai;/Þ may be written in terms of an absorptive
Labs;iðm; mi; kiÞ and a dispersive contribution Ldis;iðm; mi; kiÞ.

Labs;iðm; mi; kiÞ ¼
ki=2

pððki=2Þ2 þ ðm� miÞ2Þ

Ldip;iðm; mi; kiÞ ¼
�ðm� miÞ

pððki=2Þ2 þ ðm� miÞ2Þ

ð2Þ

The spectral lineshape of a resonance with a phase / can be
determined by evaluating the following function over all frequen-
cies m. A peak in pure absorption then has a phase of 0�.

Liðm; mi; ki; ai;/Þ ¼ aiðcosð/ÞLabs;iðm; mi; kiÞ � sinð/ÞLdis;iðm; mi; kiÞÞ ð3Þ

The total lineshape SexpðmÞ of a dephased spectrum consisting of
two peaks can be written as follows.

SexpðmÞ ¼ LAðm; mA; kA; aA;/Þ þ LBðm; mB; kB; aB;/Þ ð4Þ

In order to deconvolute such a spectrum we assume it is being
fitted with two Lorentzian lineshapes in pure absorption, i.e. / ¼ 0,
where linewidths and center frequencies do not change.

SfitðmÞ ¼ Labs;Aðm; mA; kA; aAfitÞ þ Labs;Bðm; mB; kB; aBfitÞ ð5Þ

The task is to find the fitted peak areas aAfit; aBfit which give the
smallest deviation between SfitðmÞ and SexpðmÞ in other words the
smallest ‘‘total square error” E.

E ¼
Z þ1

�1
ðSexp � SfitÞ2dm ð6Þ

Necessary conditions for the optimum set of parameters
aAfit; aBfit are

@E
@aAfit

¼ 0 ^ @E
@aBfit

¼ 0 ð7Þ

These two equations can be solved simultaneously for aAfit and
aBfit , the term mA � mB is substituted by Dm, the sum of linewidths
kA þ kB by ks, the term aA=aB by r and the relative error
Dr
r ¼

aAfit=aBfit�aA=aB

aA=aB
of the ratio is calculated in Eq. (8). Because exper-

imental spectra are usually ‘‘phased” such that the phase / is very
close to zero a Taylor expansion up to second order of / around 0�
may be applied to identify the main sources of error.

Dr
r
� X1 � /þ X2 � /2 ð8Þ

where X1 and X2 (see Supporting information) are

X1 ¼
4ksðkAks þ 4kAkBr þ kBksr2ÞDmþ 16ðkA þ kBr2ÞDm3

rððk2
A � k2

BÞ
2 þ 8k2

s Dm2 þ 16Dm4Þ
ð9Þ

This formula provides an error estimate for a given set of line shape
parameters of two peaks. We calculated plots of the relative error
Dr=r as a function of the signal phase / for a particular intensity ra-

ppm−16−80816 δ/

B

A

Fig. 1. Simulated NMR spectra of a line shape function perfectly in phase (dotted
line) and a lineshape being out of phase (signal phase / = 10�) but with otherwise
identical lineshape parameters.
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