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Data analysis in MRI usually entails a series of processing procedures. One of these procedures is noise
assessment, which in the context of this work, includes both the identification of noise-only pixels and
the estimation of noise variance (standard deviation). Although noise assessment is critical to many
MRI processing techniques, the identification of noise-only pixels has received less attention than has
the estimation of noise variance. The main objectives of this paper are, therefore, to demonstrate (a) that
the identification of noise-only pixels has an important role to play in the analysis of MRI data, (b)
that the identification of noise-only pixels and the estimation of noise variance can be combined into
a coherent framework, and (c) that this framework can be made self-consistent. To this end, we propose
a novel iterative approach to simultaneously identify noise-only pixels and estimate the noise standard
deviation from these identified pixels in a commonly used data structure in MRI. Experimental and sim-
ulated data were used to investigate the feasibility, the accuracy and the stability of the proposed

Keywords:

Noise identification

Noise variance estimation
Rayleigh distribution
Gamma distribution

MR noise

Noise clustering

Graphical analysis of noise technique.

Published by Elsevier Inc.

1. Introduction

Magnetic resonance imaging (MRI) [1] is a rapidly expanding
field and a widely used medical imaging modality possessing many
noninvasive and quantitative techniques capable of probing func-
tional activity [2] as well as tissue morphology in the brain [3,4].
Data analysis in MRI is sophisticated and can be thought of as a
“pipeline” of closely connected processing and modeling steps.

Because noise in MRI data affects all subsequent steps in this
pipeline, e.g., from noise reduction [5] and image registration [6]
to techniques for breaking the noise floor [7], parametric tensor
estimation [8-11] and error propagation [12-17], accurate noise
assessment has an important role in MRI studies.

Noise assessment in MRI usually means the estimation
of Gaussian noise variance (or standard deviation (SD)) alone
[18-23]. Previously proposed methods for the estimation of Gauss-
ian noise SD can be separated into two groups. In the first group,
the Gaussian noise SD is estimated from a manually selected re-
gion-of-interest (ROI), while in the second group, it is estimated
from an entire image or a volumetric data set automatically with-
out human intervention.

A major problem faced by the first group of manual methods is
lack of reproducibility of the results. The second group of automatic
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methods overcame this problem by bringing objectivity into the
estimation process so that the Gaussian noise SD can be estimated
without human input and that the results obtained can be repro-
duced. However, the most critical problem facing current auto-
matic methods is the separation of pure noise from noisy signals
and other artifacts because the way in which the automatic meth-
ods of Sijbers et al. [22] and of Chang et al. [21] work is by lumping
the values of all the pixels from an entire image or from an entire
volumetric data set into a one-dimensional array and then estimat-
ing the Gaussian noise SD from the histogram of this one-dimen-
sional array. Complicated criteria and techniques have been
developed by Sijbers et al. [22] and Chang et al. [21] to separate
pure noise from noisy signals and other artifacts from the histo-
gram alone. In this work, we introduce a simpler paradigm for per-
forming noise assessment in MRI. The proposed method shows
improved performance compared to previous methods, and may
have application in other scientific and technological areas as well.

One of the major aims of this paradigm is to help us get out of
the “one-dimensional” predicament faced by the automatic meth-
ods of Sijbers et al. and Chang et al. so that the separation of pure
noise from noisy signals and other artifacts can be done more
cleanly and simply. A moment of reflection will indicate that the
identification of noise-only pixels should be a part of the paradigm
in order to enhance the performance and accuracy of the estima-
tion process, but the identification of noise-only pixels entails
some a priori knowledge of the Gaussian noise SD. Therefore, any


mailto:guankoac@mail.nih.gov
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr

Communication /Journal of Magnetic Resonance 199 (2009) 94-103

paradigm that attempts to make the identification of noise-only
pixels a part of the overall noise assessment protocol will necessar-
ily be iterative. Such a paradigm, if feasible, not only can improve
the accuracy of the estimate of the Gaussian noise SD but also
can provide spatial distributions of noise for further analysis or
for quality control and calibration.

In this work, we will present one such paradigm. We will dem-
onstrate that (a) the identification of noise-only pixels, which has
not received much attention in MRI literature, is as important
as—if not more important than—the estimation of Gaussian noise
SD, (b) the identification of noise-only pixels and the estimation
of Gaussian noise SD via the sample median (or the sample mean
or other optimal sample quantiles, see Appendix B) can be com-
bined into a single coherent framework of noise assessment, and
(c) this framework can be made self-consistent, that is, it can be
turned into a fixed-point iterative procedure.

Briefly, we propose a novel approach to simultaneously identify
noise-only pixels and estimate the Gaussian noise SD from a com-
monly used data structure (see Fig. 1) in MRL The data structure as
shown in Fig. 1 is ubiquitous in functional MRI and diffusion MRI. It
is composed of a series of images acquired at the same physical
(slice) location but not necessarily acquired under the same exper-
imentally controlled conditions. Hereafter, we shall refer to the
proposed technique as PIESNO, which stands for Probabilistic Iden-
tification and Estimation of Noise. PIESNO consists of two distinct
parts that are connected dynamically in an iterative manner. The
first part of PIESNO is the proposed probabilistic technique for
identifying noise-only pixels, which is specifically formulated to
deal with the data structure mentioned above. Here, it is assumed
that the noise variance is uniform both within and across images in
this data structure. The second part of PIESNO is the estimation of
Gaussian noise SD via the sample median (or the sample mean or
other optimal sample quantiles, see Appendix B), which will be
outlined below.

The proposed probabilistic identification of noise-only pixels is
designed to take advantage of this data structure to increase the
discriminative power to identify noise-only pixels. Specifically, it
identifies noise-only pixels through the distribution of the mean
of a collection of measurements, shown as a vertical column of
data along the k axis in Fig. 1. Consequently, the discriminative
power of the identification, which is related to the sharpness of
the distribution of the mean, increases as the number of images
within the proposed data structure increases. For completeness,
we will show that the distribution of the mean used in this work
is a Gamma distribution, which is well-known in MR, e.g., see [24].

Our technique for estimating Gaussian noise SD is based on the
median method but we also provide other methods of estimation
based on the sample mean and optimal sample quantiles. The
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median method is a simple formula of the Gaussian noise SD
expressed in terms of the sample median of a collection of noise-
only measurements. We chose the sample median for its ease of
use. The theoretical reason behind our choice of the sample median
over other slightly more optimal methods based on the sample
quantile of a specific order is explicated in Appendix B.

Both the identification of noise-only pixels and the estimation
of noise SD are integral parts of the proposed framework on noise
assessment because they are connected dynamically and itera-
tively to identify noise and estimate noise SD in a self-consistent
manner.

Both experimental and simulated data were used to investigate
the feasibility, accuracy, stability and global property of the pro-
posed framework. Our approach managed to tease apart two noise
distributions through a simple global analysis based on a well-
know graphical technique in nonlinear dynamics known as Cobweb
[25].

A comparison between our technique and Sijbers’ [22] (hereaf-
ter referred to as the Sijbers Method) was performed. Our tech-
nique demonstrated a lower mean squared error in estimating
the Gaussian noise SD and a combined method based on both
our technique and the Sijbers Method was found to be the most
optimal when the number of images within the data structure
was above five.

2. Methods
2.1. Theoretical background

In this section, we will first provide the necessary details about
the distribution of the arithmetic mean of K independent Gamma
random variables, which is also a Gamma distribution, and then
establish the connection between the proposed data structure
and this well-known distribution by a few simple changes of vari-
ables. Throughout this section, we will use the similar notation as
employed in [26].

It is known that magnitude MR signals, m (or m;; in Fig. 1),
reconstructed from the sum-of-squares algorithm through an N-
receiver-coil MRI system [27] follow a nonCentral Chi, 7 = m/oy,
distribution of 2N degrees of freedom with the non-centrality
parameter given by #?/g;. The probability density function (PDF)
of y is given by [23,26]:

mN m?2 +n? mn
7 = - — =
p;(my,04,N) a2 exp( 202 >IN71<6§>vm 0 (1)
where the PDF is zero for m < 0, 7 is the underlying (combined) sig-
nal intensity, o, is the Gaussian noise SD, and I is the kth-order
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Magnitude images acquired

under different experimentally
controlled conditions but
at the same slice location.

Fig. 1. The proposed data structure includes volumetric data composed of magnitude MR images that are acquired at the same slice location but not necessarily under

identical experimentally controlled conditions.
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