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a b s t r a c t

The rapid development of 31P magnetic resonance spectroscopy (MRS) has enhanced non-invasive mea-
surement of brain metabolites, which is important for biomedical research. The accuracy and efficiency of
data post processing and quantification is paramount for MRS applications. One of the difficulties with
in vivo 31P MRS data quantification is the separation of broad line-width resonances from chemical com-
pounds’ resonances under a low signal-to-noise ratio condition. Furthermore, the chemical shift of some
compounds caused by pH and Mg2+ concentration can be troublesome. This work aims to develop an
automatic algorithm using a state-space based quantification approach to solve the above mentioned
problems. To achieve this aim, we utilized an HSVD based adaptive optimizing prior knowledge algo-
rithm, which uses so called ‘‘interference” signals to optimize prior knowledge iteratively for parameter
optimization. We termed this algorithm IRIS-HSVD, which stands for Iterative Reduction of Interference
Signal HSVD. The Monte Carlo evaluations of the algorithm were conducted with simulated data using
in vivo parameters commonly obtained from a 4 T scanner. The performance of this algorithm using sim-
ulated data was compared to those of other automatic methods including HSVD and HTLS-PK. Examples
of in vivo 31P data obtained from brains of healthy subjects on a 4T MRI scanner were also presented,
which demonstrated the superiority of the new method. The results were compared with those using
AMARES.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Magnetic resonance spectroscopy (MRS) has become increas-
ingly important in biomedical research because of its ability to
measure in vivo biochemical information. Multi-voxel 31P MRS is
a useful tool for the study of in vivo energy metabolites in humans
and animals [1,2]. However, spectral analysis can be tedious and
time consuming, particularly for multi-voxel data acquired using
2D or 3D MRS. Additionally, it suffers from a low signal-to-noise
ratio (SNR), spectral overlapping, chemical frequency variation
influenced by a biophysiological environment, and significant
baseline artifacts. These issues can be attributed to (1) a low natu-
ral concentration of 31P biochemical compounds in in vivo samples,
(2) the variation of certain 31P resonances by the influence of phys-
iological environment, (3) the origination of some signals from
immobile compounds (presumably from bone marrow and/or cell
membranes), and/or (4) imperfect hardware. These complications
continue to challenge the development of an automatic algorithm
for MRS data quantification, which is strongly needed to further
advance this methodology to widespread clinical applications.

The algorithms developed for MRS data analysis based on the
state-space approach are rapidly increasing due to significant
improvements in quantitation robustness and accuracy [3]. The
state-space methods often employ tools such as the Singular Value
Decomposition (SVD) [4] or the orthogonal matrix triangulariza-
tion (also known as QR decomposition) [5,6] to distinguish the sig-
nal and noise subspaces. Compared to the frequency domain
methods [7], the state-space approach has less sensitivity to phase
errors and greater tolerance of spectral overlap, baseline distor-
tions and/or missing data samples [8,9].

The SVD, as well as its derivative methods such as Hankel SVD
(HSVD) [10,11], Hankel Lanczos SVD (HLSVD) [12] and Linear Pre-
diction SVD (LPSVD) [13,14], provide nearly automatic quantifica-
tion approaches, although their results are often prone to lack of
physical and/or physiological meaning (i.e., specificity and accu-
racy). It was demonstrated that the accuracy of these approaches
can be improved by introducing Hankel Total Least Squares (HTLS)
techniques [15]. Furthermore, incorporating prior knowledge with
subspace methods (or, in general, any methods) could further im-
prove performance robustness. For example, simulated spectra by
spin physics were utilized to obtain a theoretical estimation of
the frequencies and damping factors of targeted resonances in
QUEST (quantitation based on quantum estimation), which can
also handle baseline distortions [16]. Prior knowledge of signal
frequencies and damping factors can also serve as the starting
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estimation values in AMARES (advanced method for accurate, ro-
bust, and efficient spectral fitting) [19]. In addition, constrained
signal frequencies and damping factors were used in methods such
as the frequency domain SVD [20], Extended Relaxation Based Esti-
mator (E-RELAX) [21], and Metropolis Frequency-Selective
(MeFres) [22]. The chemical shift relationship of certain chemical
species was also used to improve algorithm accuracy and robust-
ness in the Knowledge Based SVD (KNOB-SVD) [23] and the Knowl-
edge Based Total Least Square (KNOB-TLS) methods [24]. Both
algorithms estimated the relative chemical frequency using a fixed
chemical shift between a- and c-ATP and demonstrated an
improvement in performance compared to the AMARES, HTLS,
and HTLS-PK algorithms.

To date, few studies have focused on in vivo 31P MRS conditions,
in which chemical frequency changes could be caused by biophys-
iological and/or physical variations (e.g., pH value and Mg2+ con-
centration, and spatial B0 variations). In this work we propose an
algorithm termed Iterative Reduction of Interference Signal HSVD
(IRIS-HSVD), which utilizes interference signals to optimize prior
knowledge iteratively to separate baseline components and to esti-
mate parameters for in vivo 3D 31P MRS data that suffer from a low
SNR. In 3D MRS experiments, whole brain 31P MRS data may con-
tain spectra with varying chemical shifts caused by B0 inhomoge-
neity in different locations in addition to those due to
biophysiological variants. Thus, an adaptive, baseline tolerant,
and automatic algorithm is strongly desired. The IRIS-HSVD itera-
tively separates the signal subspace from noise and baseline sub-
spaces by the QR decomposition. During each iteration, the
interference signal (see below), which resulted from inaccurate
prior knowledge, is identified and utilized to optimize the param-
eter estimation. The resulting signal frequencies and damping fac-
tors corrected by the interference signal are then used as the ‘‘new”
prior knowledge for the next iteration. This procedure continues
until the interference signal is minimized. This algorithm utilizes
a constrained decision making mechanism and is fully automated
and relatively robust.

2. Materials and methods

2.1. FID signals modeling

The complex time domain free induction decay (FID) signal is
often modeled by the sum of exponentially damped sinusoids gi-
ven in Eq. (1).

yn ¼ �yn þ en ¼
PK
k¼1

ckzn
k þ en

zk ¼ eð�dkþifkÞ2pDt

ck ¼ akei/k

ð1Þ

where yn represents the original signal, �ynis the estimated signal, en

is a complex white Gaussian noise, and n is the index of data sam-
ples. The value K is the number of different frequencies and zk refers
to the kth signal pole with a frequency of fk and a damping factor of
dk (the reciprocal of the transverse relaxation time constant, T�2),
and Dt is the data sampling time interval [8,18]. The value ck is
the complex amplitude of zk, ak is the absolute magnitude, and uk

is the phase.
In this work, we develop an algorithm based on the state-space

approach to solve Eq. (1). Since details of the state-space method
can be found elsewhere [25], we are brief here. In short, by arranging
yn (n = 0, . . ., N � 1) in Eq. (1) into a special L by M Hankel matrix as
shown in Eq. (2), the parameters zk and ck can be estimated by com-
puting the SVD of H = URVH, where R is a diagonal matrix contain-
ing the singular values, U and V is an L by L and M by M unitary
matrix, respectively, and H denotes Hermitian conjugation [8,11].
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ð2Þ

2.2. Baseline distortion modeling

As mentioned above, broad line-width peaks and/or hardware
imperfection can cause baseline distortion. In this work, we as-
sume that the broad line-width signals causing baseline distortion
can be represented by an assortment of fast decaying exponentially
damped sinusoids and can be considered in the singular values of
the HSVD solution. This is reasonable since the fast decaying part
of FID is likely, in most in vivo 31P MRS, the signal from macromol-
ecule-bonded compounds such as cell membrane phospholipids.

2.3. Determine the number of poles

To compute the singular values is straightforward; however, it
is no trivial matter to determine the number of singular values,
k, to represent the estimated signal, �yn; which may include broad
line-width components. Several methods have been proposed to
determine the number of singular values, but the decision of the
number of singular values to be used can be difficult [9]. In ideal
cases, we should choose a maximum number of k to represent yn

with as little noise as possible. Some investigators have recom-
mended the use of the ratio of rm+1/(rm � rm+1) as a guideline
for choosing the value of k [25]. The values rm and rm+1 are the
smallest accepted and the largest rejected singular value of the
Hankel matrix in Eq. (2), respectively, where m (i.e., k) and
(m + 1) are the indices of the singular values. However, in this
study, we used the ratio of rm+1rm/(rm � rm+1)2 as the function
of singular value index (m) instead of rm+1/(rm� rm+1). Otherwise,
the decision making procedure is the same as the original method
proposed by de Groen [25]. This ratio provides a compatible tool
for determining the number of poles to be used and will be used
through this work.

2.4. Prior knowledge and adaptive optimization processes

As noted, the HSVD method does not necessarily return the
solutions (poles) with physiological and biochemical meaningful
frequencies and damping factors. What it yields in most cases is
a mathematically best ‘‘fit” to yn. This drawback is particularly
apparent in in vivo data when the SNR is significantly low. There-
fore, known information such as frequencies and damping factors
can be helpful for parameters optimization and fast converging
in data analysis. Perhaps the most challenging task in the develop-
ment of an algorithm for MRS quantitation is to have the ability of
self-correction for prior knowledge when needed. It is shown that
the phase change of a signal pole is strongly correlated with its fre-
quency deviation from the original value [17]. Therefore, one may
utilize phase alternation information to assist in correcting fre-
quency mismatch if needed in the optimization process. Indeed,
we found that the frequency difference of a pole from its ‘‘true” va-
lue can be approximated by the product of its phase change and its
damping factor, that is, Dfk ffi Dpk*dk0. We have demonstrated this
relationship in Fig. 1. To assess this relationship, a set of 31P MRS
data was simulated by varying the frequency of certain peaks (Pi,
a-, b-, and c-ATP) using parameters listed in Table 1. Briefly, two
baselines were added to the simulation data with SNR levels rang-
ing from 100 to 1100. (see Section 2.7 for details) Note that the fre-
quencies of Pi, a-, b-, and c-ATP peaks varied linearly between �1
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