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Since their initial description, phased array coils have become increasingly popular due to their ease of
customization for various applications. Numerous methods for combining data from individual channels
have been proposed that attempt to optimize the SNR of the resultant images. One issue that has received
comparatively little attention is how to apply these combination techniques to a series of images
obtained from phased array coils that are then analyzed to produce quantitative estimates of tissue
parameters. Herein, instead of the typical goal of maximizing the SNR in a single image, we are interested
in maximizing the accuracy and precision of parameter estimates that are obtained from a series of such
images. Our results demonstrate that a joint Bayesian analysis offers a “worry free” method for obtaining
optimal parameter estimates from data generated by multiple coils (channels) from a single object
(source). We also compare the properties of common channel combination techniques under different
conditions to the results obtained from the joint Bayesian analysis. If the noise variance is constant for
all channels, a sensitivity weighted average provides parameter estimates equivalent to the joint analysis.
If both the noise variance and signal intensity are similar in all channels, a simple channel average gives
an adequate result. However, if the noise variance differs between channels, an “ideal weighted”
approach should be applied, where data are combined after weighting by the channel amplitude divided
by the noise variance. Only this “ideal weighting” provides results similar to the automatic-weighting

inherent in the joint Bayesian approach.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Since their early description [1], phased array coils have become
increasingly widespread due to their ease of customization for var-
ious applications. Their recent surge in popularity can be traced to
improvements in coil technologies and the development of rapid
imaging techniques that utilize the spatial information from the
phased array coils to decrease acquisition times [2,3]. However,
these coils are also used in more traditional imaging experiments
simply for their flexibility and increased signal-to-noise ratio (SNR).

Numerous investigators [1,4-9] have attempted to optimize the
SNR of images from phased array coils and proposed various tech-
niques for combining such data. Roemer [1,5] and others [6,7,9]
have suggested that the sum-of-squares (SOS) combination pro-
vides a near optimal signal-to-noise ratio in the reconstructed im-
age, approaching that of a reconstruction using the “correct”
channel sensitivity profile without requiring additional acquisi-
tions. Others have refined this technique by weighting the chan-
nels using more complex factors that reduce the impact of local
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signal and noise fluctuations and more accurately characterize
the true coil response profiles [6,8,10-12]. These weighting factors
are commonly obtained from either a smoothed version of the data
itself or a separately acquired lower-resolution image.

One issue that has received relatively little attention is how the
different channel combination techniques affect parameter esti-
mates obtained from modeling the signal in a series of images
[11,13]. Here, we are interested in maximizing the accuracy and
precision of parameter estimates that are obtained from a series
of array coil images. In addition to SNR optimization, this imposes
the additional constraint of accurately preserving the relationships
between the series images.

We also explore the effects of various channel combination
methods on the accuracy and precision of parameter estimates
and examine the case where the common assumption of equal
noise power across channels is violated. In the simplest method
for combining channels, the channel average or sum, all channels
are treated equally. When signals of differing SNR are averaged,
information from the high SNR channels are diluted by the lower
SNR channels, resulting in less accurate and less precise parameter
estimates [14]. Such variations in signal and noise power across
channels are common in real imaging experiments as the array ele-
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ments are seldom equidistant from a particular region of interest. If
there are systematic effects in the data that are not properly mod-
eled (e.g. the Rican noise profile induced by processing the magni-
tude images from each channel), they can coherently combine and
further distort the parameter estimates. Channels may also experi-
ence different loading due to their placement on different parts of
the sample or patient, and will have some degree of coupling. Thus,
the simple averaging of channels is rarely advisable.

Sensitivity-weighted averaging attempts to mitigate these ef-
fects by accounting for spatial variations in signal intensity for each
channel. However, these methods do not account for variations in
noise power between channels and can still magnify systematic ef-
fects and artifacts in the data. If the channel weighting factors for
each image in a series is derived from its own intensity, these
weighting factors will differ across the series images, potentially
biasing the parameter estimates. An extreme case of this occurs
with the sum-of-squares (SOS) combination of images. While re-
ported to provide a “near-optimal” SNR, the SOS combination also
artificially distorts the relationships between images in a series by
forcing all low SNR points to take positive values, introducing a DC
offset that coherently combines across channels. For an exponen-
tial decay model, this increased noise floor produces a systematic
underestimation of the decay rate constant and will affect the
accuracy and precision of rate constant estimation, as previously
described [6,15-20].

As an alternative to determining the optimal channel weighting
factors for a given experimental setup, we could also analyze mul-
ti-channel data without signal combination. The signals from the
various channels can be jointly analyzed with a model that allows
the channel-specific properties (such as signal amplitude and noise
power) to vary across channels while requiring the MRI properties
inherent to the imaged object (such as a decay rate constant) to be
identical for all channels. We have implemented this framework
using Bayesian probability theory and demonstrate its benefits
for modeling simulated multi-channel data compared to more tra-
ditional combination techniques. For simplicity, we consider here
only the mono-exponential decay model prevalent in MR, but
these general principles have an obvious extension to more com-
plex estimation problems. We conclude that a joint Bayesian anal-
ysis offers a “worry free” method for obtaining optimal parameter
estimates from multi-channel data.

2. Theory

A ubiquitous model in MRI experiments is the mono-exponen-
tial decay. For simplicity of the analysis below, we assume a simple
mono-exponential analysis without a constant, such as in T, or dif-
fusion measurements. For an array of M-channels used to acquire
decay measurements at N different times, the measured signal
can be expressed as:

Sm(tn) :Am eXp(*R tn)+'//m(tn)v (1)

where Sp(t,) is the signal measured on the mth channel at the nth
sampling time (or b-value in the case of the diffusion experiment),
N, (tn) is the noise in the mth channel at the nth sampling time t,,
Ap, is the signal amplitude in channel m, and R is a rate constant
(e.g. Ry or ADC). While we assume for simplicity that the channels
are sampled simultaneously, which is typically the case, and that
there is no coupling between coils, no other assumptions are made
as to the distribution of data samples in time. The rate constant is
treated as an inherent property of the sample, and is therefore inde-
pendent of which channel is performing the measurement, whereas
the signal amplitude and the noise are properties of each channel.

NMR/MRI scanners typically produce a complex signal (quadra-
ture detection), and the real and imaginary components are com-

monly combined to produce a magnitude signal or image. For
our purposes, the complex signal from each channel is assumed
to have been “phased”, i.e. the coherent signal moved entirely to
the real channel, and only the real signals are analyzed [21,22].
This produces an improvement in SNR and removes the bias intro-
duced by using magnitude images. An alternative would be the
simultaneous analysis of the real and imaginary components from
all channels. However, as this would complicate the model by
introducing an additional amplitude (or phase) for each channel,
we will assume for simplicity that the data have already been
phased.

In Bayesian analysis, we are interested in calculating p(AR|Dal),
the joint posterior probability of the model parameters A and R gi-
ven the data, D, the standard deviation of the noise prior probabil-
ity, o, and the prior information, I. Using Bayes’ theorem and the
product rule, omitting constant terms that will cancel upon nor-
malization, and assuming independence in our prior knowledge
of A, R, and o, this can be expressed as

P(AR|Dal) o p(RIp(A|p(D|ARaT). (2)

In this equation, p(A|l) and p(R|I) are the prior probabilities of the
parameters A and R, and represent what is known about the possi-
ble values of these parameters before acquiring the data; p(D|ARc]I)
is the direct probability of the data given the parameters and is pro-
portional to a likelihood function.

Initially, we consider the signal generated by a single channel
and calculate the expected uncertainty in the resultant parameter
estimates. Using uniform and comparatively non-informative pri-
ors, the joint posterior probability of the model parameters in Eq.
(2) can be expressed as [14,23,24]

paRIDD x exp (3% ) Q= D(t) - Aexp(-Re . (3
n=0

In the majority of exponential decay experiments, the actual value
of the amplitude parameter is of little interest and we are primarily
concerned with estimation of the rate constants. In such cases, the
amplitudes can be removed from the analysis by calculating the
marginal probability for the decay rate constant, R. This requires
integrating Eq. (3) over all possible values of A:

P(RIDal) /dAp(AR|D0'I) o /dA exp (— %) (4)

Assuming high SNR, that the data are sampled at uniformly spaced
times, and that the data are acquired until the exponential decays
into the noise, the uncertainty in the decay rate constant estimate
for a single channel was previously estimated as the standard devi-
ation of the posterior probability distribution for parameter R,
V/8R3At/SNR, where At is the sampling interval between data
points and R is the true value of the rate constant [25].

To broaden the applicability of this result to imaging experi-
ments, here we relax the assumptions of uniform sampling and
acquiring data until the signal decays into the noise. In the next
section, we will also expand this result to the multi-channel case.
To analytically evaluate Q in Eq. (4), the data are expressed in
terms of A, R, and (), the true values of the amplitude, rate con-
stant, and noise:

D(t,) = A exp(—Rt,) + ij(ty). (5)

In the high SNR approximation, which allows us to neglect the noise
term from Eq. (5), evaluation of the amplitude integral in Eq. (4) and
omitting constant terms produces the marginal probability for the
rate constant in the form:

2
DP(R|DaI) x exp <2((;(:('(§;?(;)>7 (6)
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