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a b s t r a c t

Sparse sampling offers tremendous potential for overcoming the time limitations imposed by traditional
Cartesian sampling of indirectly detected dimensions of multidimensional NMR data. Unfortunately, sev-
eral otherwise appealing implementations are accompanied by spectral artifacts that have the potential
to contaminate the spectrum with false peak intensity. In radial sampling of linked time evolution peri-
ods, the artifacts are easily identified and removed from the spectrum if a sufficient set of radial sampling
angles is employed. Robust implementation of the radial sampling approach therefore requires optimiza-
tion of the set of radial sampling angles collected. Here we describe several methods for such optimiza-
tion. The approaches described take advantage of various aspects of the general simultaneous
multidimensional Fourier transform in the analysis of multidimensional NMR data. Radially sampled data
are primarily contaminated by ridges extending from authentic peaks. Numerical methods are described
that definitively identify artifactual intensity and the optimal set of sampling angles necessary to elimi-
nate it under a variety of scenarios. The algorithms are tested with both simulated and experimentally
obtained triple resonance data.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

With the advent of cold probe technology, time rather than
sensitivity is often a limiting factor in multidimensional NMR
experiments of macromolecules such as proteins. This is particu-
larly true in the case of experiments of high dimensionality. For
example, the collection of a traditional four-dimensional experi-
ment with high resolution, because of the strict requirement of
Cartesian sampling, would generally require weeks if not months
of measurement time. Multiple approaches have recently been
introduced in an effort to overcome the measurement time
requirements presented by sequential and equi-spaced sampling
of time domain data. These include analysis of non-linearly sam-
pled time domain data [1,2], filter diagonalization [3], the GFT-
based approach [4], projection reconstruction [5] and the direct
multidimensional Fourier transform [6–8]. Although all of the
methods listed have proven utility, the basis for selecting one
method over another has yet to be established. This uncertainty
arises from the various sparse sampling schemes employed by
each of the methods.

Of the sparse sampling methods radial sampling of the indirect
evolution domain is perhaps most appealing under the appropriate
conditions because of its suitability to processing with both deter-
ministic and statistical methods [9–13]. Widely implemented in

the context of projection reconstruction and the equivalent
multidimensional Fourier transform, this sampling scheme is
desirable in many cases because of the flat baseline outside of
the ridges that extend from the peaks. Additionally, it has been
shown that relatively few data points are needed to resolve specific
spectral information [12]. In the context of (3,2) projection recon-
struction and its related techniques, radial sampled data are first
processed into two-dimensional tilt planes where the tilt angle is
dependent upon the radial sampling angle selected during data
collection. Subsequently, various methods can be used to either
generate a final spectrum or peak list. In the context of direct mul-
tidimensional Fourier transform, the radial sampled data are pro-
cessed either into single angle multidimensional spectra, with
ridges extending from the peak chemical shifts at a vector depen-
dent upon the radial sampling angle. Then the single angle spectra
are compared to generate a final spectrum. Alternatively, multiple
angle data sets can be combined and Fourier transformed simulta-
neously to produce a final multidimensional spectrum with ridges
extending at all of the sampling angles included. Regardless of the
processing method applied, the quality of the final data is directly
dependent upon the radial sampling angles chosen during data col-
lection. It is the issue of angle selection that is the focus here.

Two methods have been implemented for angle selection. The
first, implemented in the context of HIFI-NMR, uses a probability
distribution to determine subsequent angles from an initial data
set [14]. The second, implemented in the context of projection
reconstruction, selects subsequent angles by choosing the angle
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that resolves the most peaks from a provisional spectrum [15,16].
In brief, this approach first generates a provisional spectrum from
data that has already been collected. Subsequent sampling angles
are assessed by generating a skyline projection spectrum for each
angle and scoring the skyline projections for the number of
resolved peaks it contains. A skyline projection spectrum is gener-
ated for each potential sampling angle by taking the maximum
value along a vector extending through the provisional spectrum
perpendicular to the angle of interest. If two peaks in the provi-
sional matrix are on the same vector only one response is shown
in the skyline projection. The next angle is selected by comparing
the number of resolved peaks in each skyline projection spectrum
and avoiding angles that have relatively few resolved peaks in their
skyline projections. As pointed out by the authors, this algorithm
functions optimally when a spectrum is not too complex. When
the complexity of the spectrum increases the algorithm could fal-
ter, primarily from limited resolution in the skyline spectra. Addi-
tionally, this method does not present the ability to determine
when a sufficient number of radial sampled angle spectra have
been collected. This inability arises from not treating the peaks in
the provisional spectrum individually, but rather looking at the
total number of resolved peaks in the skyline projection. Only in
the case where the total number of peaks resolved in the skyline
spectrum is equal to the number of peaks in the provisional spec-
trum is one able to assess that ‘enough’ data have been collected. In
the absence of such a condition it is impossible to decipher an
authentic peak from an artifact peak. In the absence of a determin-
istic angle selection algorithm, data collection becomes inefficient
and time is potentially wasted by collecting too much data or by
collecting data of poor quality (i.e. data with a large number of arti-
fact peaks).

In order to increase the utility of the radial sampling approach we
present methods to optimize the set of sampling angles employed.
The approaches can be classified into two general situations. The first
is when the peak resonance frequencies are known and need to be
resolved from artifact and the second is when the peak resonance
frequencies are not known and need to resolved and assigned. The
former case corresponds to a need to measure variation in intensity
such as in a hydrogen exchange or classical relaxation experiment.
For this two algorithms have been developed. One determines the
minimum set of angles necessary to distinguish authentic peak
intensity from artifactual intensity introduced by the Fourier analy-
sis of radially sampled data (i.e. the ridges). The second algorithm
determines the fewest angles needed to produce an artifact free
spectrum when a lower value comparison is performed. Alterna-
tively, for situation where the peak resonance frequencies are not
known, an algorithm is developed to provide for iterative post-
acquisition determination of the optimal sampling angles to collect
and to provide a definitive conclusion regarding the separation of
authentic peak intensity from ridge artifacts. This type of algorithm
is essential for the optimized application of radial sampling of data to
be employed for de novo resonance assignment. Both algorithms are
tested in the context of a radial sampled HNCO processed with the
direct multidimensional Fourier transform combined with lower
value comparison but are applicable, with minor modifications to
the selection criteria, to more sophisticated artifact removal
schemes.

2. Theory

In a three-dimensional spectrum, radial sampling is accom-
plished by linking the evolution of the two indirect dimensions
by setting t1 = scos(a) and t2 = ssin(a), where s is the incremented
time domain and a is the sampling angle, while continuing to col-
lect the traditional quadrature pairs for both indirect dimensions

[15]. To generate a frequency domain spectrum the data can be
processed with a direct single step, 2D Fourier transform [11]

Sðx1;x2Þ ¼
Xtmax

1

t1¼0

Xtmax
2

t2¼0

expð�ix1t1Þ expð�jx2t2Þf ðt1; t2Þwðt1; t2Þ

where i and j are quarternion numbers; t1, t2 are the incremented
times, x1 and x2 comprise the frequency pair being determined,
f(t1, t2) = exp(�iX1t1)exp(�jX2t2) is the data being transformed, X1

and X2 are the chemical shifts for time domains 1 and 2, respec-
tively, and w(t1, t2) is a weighting factor to account for the non-equi-
spaced sampling of the time domain.

When t1 and t2 are incremented independently, in traditional
Cartesian fashion, the direct 2D Fourier transform produces the
same results as the traditional sequential one-dimensional Fourier
transforms. In the case of radial sampling the Fourier transform is
effectively underdetermined and produces ridges that extend
through the spectrum where Eq. (2) is satisfied

x1 �X1

x2 �X2
¼ tanðaÞ ð2Þ

This relationship is true when a is either positive or negative, lead-
ing to two ridges extending from the each peak in the spectrum, one
with a positive slope and the other with a negative slope.

We define an ordered triple with the directly detected
dimension, x3, in the first position and the two linked indirect
dimensions, x1 and x2, in the second and third positions, respec-
tively. The following linear equation describes the ridge extending
from a peak located at point P1 in the so-called (3,2) radially
sampled experiment, where we employ the nomenclature of
Szyperski and Atreya [17]

P ¼ P1 þ nð0; cosð�ð90� aÞÞ; sinð�ð90� aÞÞÞ ð3Þ

where P represents a point on the ridge, a is the sampling angle and
n is a scalar. As before, the ± sign is included because two ridges
extend, one with a positive slope and another with a negative slope.
In the case of a (4,2) radially sampled experiment four ridges would
extend from each peak. In this case, Eq. (3) is expanded to account
for two sampling angles, a and b, as described by the following
equation:

P ¼ P1 þ nð0; cosð�ð90� aÞÞ cosð�ð90� bÞÞ; sinð�ð90� aÞÞ
� cosð�ð90� bÞÞ; sinð�ð90� bÞÞÞ ð4Þ

These basic descriptions allow the determination of whether two
peaks are resolved at a given sampling angle and where all of the
potential artifact positions are located. Further, this description
allows all peaks to be analyzed simultaneously, regardless whether
they are resolved in the directly detected dimension.

2.1. Peak–peak resolution

Two peaks in a radially sampled experiment are not resolved
if the ridge from one of the peaks intersects the second. To
determine if two peaks are resolved the distance from one of
the peaks to the closest points on the positive and negative ridge
components of the other peak is determined. If both distances
are greater than a specified cutoff (chosen to reflect a finite line
width), the peak is considered resolved. The distance measure-
ment is illustrated in Fig. 1A, where the peaks are represented
by points P1 and P2. For clarity only one of the ridge components
is shown in the figure. The distance between P2 and the ridge
from P1 is determined by applying the point to line distance
algorithm commonly encountered in computer graphics [18].
Here we generalize this approach. The first step is to define an
equation in order to solve for point Pmin, the closest point on
the ridge to the peak located at P2
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