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a b s t r a c t

A new program—ProMoCS—is presented for the simulation of dynamic nuclear magnetic resonance spec-
tra. Its algorithm is based on the Monte Carlo method as the one of the previously introduced MC-DNMR
but the theory of ProMoCS is explained by using the statistical approach of propagator formalism. Our
new program is suitable for the calculation of dynamic NMR spectra of spin systems up to 12 ½ spin
nuclei, several conformers and any type of exchange between them. Mutual exchange of coupled spins
can be simulated as well. While it keeps the main advantage of the Monte Carlo based method: calcula-
tion with significantly smaller matrices as compared with programs based on the simulation of the aver-
age density matrix, the maximum number of nuclei is increased significantly. Thus spectra of such
systems can be simulated that was impossible previously.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Methods for the simulation of dynamic NMR spectra are well-
known for systems with chemical exchange [1–7]. The most wide-
spread simulation programs (DNMR5 [8–11], MEXICO [12–14],
WinDNMR [15–16], Bruker’s TOPSPIN DNMR module [17]) are
based on the calculation of transitions using the average density
matrix. The most important limitation of this method is the huge
computer memory requirement even for simple spin systems. In
the case of a spin system with n nuclei and s conformers the
dimension of the coefficient matrix is proportional to s�4n. This ma-
trix blocks according to the coherence levels and these blocks are
treated separately. The blocks with smaller sizes, the neglection
of combinational transitions and the use of sparse matrix diagonal-
ization methods [18–19] can reduce the computer memory
requirement radically, but the reduced matrix still can be too big
for more complicated spin systems.

Our MC-DNMR program based on the theory of Monte Carlo
simulations was introduced as alternative simulation algorithm
with less memory requirement previously [20]. The theory of that
program was based on the extension of single spin vector model to
coupled spin systems, by which the chemical exchange could be
incorporated into the vector model. The memory requirement of
this program is significantly smaller than that of the programs
mentioned above. However, in cases of scalar coupling between
the exchanging sites the simulated high temperature spectrum
yields in non-realistic multiplets.

In order to correct this error the theoretical background of the
Monte Carlo simulations of DNMR spectra is now presented using
the propagation of individual density matrices. A new program
called ProMoCS (Propagation & Monte Carlo Simulation) was writ-
ten which gives correct results even in cases where MC-DNMR
fails.

2. Theoretical background

The well-known method for the simulation of dynamic NMR
spectra is based on the solution of Liouville–von Neumann equa-
tion [21]:

d�q
dt
¼ �i½H; �q�: ð1Þ

As a first step this equation is converted into the Liouville space.
This means that the average density matrix (�q, function of t time)
becomes a vector (�r) and its commutator with the Hamiltonian
(H) transform to a superoperator (�L):

d�r
dt
¼ �i�L�r: ð2Þ

In order to describe the relaxation and dynamic processes two addi-
tional terms are included: the Redfield-type relaxation (R) and the
exchange (X) matrices, resulting in:

d�r
dt
¼ �ði�Lþ Rþ XÞ�r: ð3Þ

The solution of this equation gives the evolution of the density ma-
trix as a function of the time elapsed as:

�rðtÞ ¼ expð�ði�Lþ Rþ XÞÞ�r0; ð4Þ
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where �r0 is the density matrix at the start of detection (t = 0). From
now the relaxation is approximated with the multiplication of the
time domain signal with an exponential at the end of the calcula-
tion so the matrix R can be neglected in Eq. (4). The signal (fid) is
then calculated as the scalar product of the density matrix and
the vector of the I+ operator:

fidðtÞ ¼ Iþj�rðtÞ
� �

: ð5Þ

The average density matrix calculated by this method describes the
average of molecular states in the whole system. This means that all
sites are included in it (Fig. 1a). Spins are distinguished by their
chemical environment (and chemical shift) and not by the individ-
ual nucleus they belong to. The coefficients in the density matrix
represent the populations of the coherences.

For our purposes we define the individual density matrix (q or
r). This matrix describes the probabilities of the possible spin
states of the nuclei in one individual molecule. From now we
use the name spin set for these nuclei. In an exchanging system
a given spin set can change its chemical environment but the
nuclei remain together in it. In different chemical environments
the density matrix evaluates differently (e.g. the Hamiltonian de-
pends on the chemical environment). As molecules can convert
into each other at any time, the chemical environments, Hamil-
tonians and propagators of spin sets are permuted randomly in
time.

The fid of a spin set can be calculated from its own density
matrix as it is shown later. The sum of the fids of a few hundreds
or thousands of randomly selected spin sets gives the overall fid
which is a good approximation of the macroscopic signal (Monte
Carlo method).

In order to construct the algorithm of the simulation the follow-
ings should be given: the method for the determination of the life-
times of the conformers and the mathematical forms of the
operators of precession, detection and exchange.

The time of an exchange (to be called exchange points and
noted as tr) is determined statistically based on the rate coefficients
of the exchanges. The lengths of intervals between two exchange
points (time slices) have exponential distribution with the average
lifetime (si) of the molecule as its parameter [20]:

trþ1 � tr ¼ �si lnðrndÞ ¼ �
X

j

kij

 !�1

lnðrndÞ; ð6Þ

where rnd is a random number and kij is the rate coefficient of the
exchange from molecule i to j.

During an exchange, which is assumed to happen in negligible
time (instant jump approximation), the spin set remains unaltered,
only the chemical environment and its parameters like chemical
shift and coupling constants of the corresponding nucleus alter.
This affects only the precession operator but not the density matrix
(Fig. 1b). As a consequence the precession operator of the r-th time
slice has to be replaced by a new one according to the new state in
time slice r + 1 at the beginning of the (r + 1)th time slice (e.g.
replace PAB with PCD at t1 for r = 1 on Fig. 1b). After the exchange
the simulation for time slice r + 1 is continued using r(r) (the den-
sity matrix at tr).

The fid of the r-th time slice for one molecule is calculated at the
detection points that fall into the corresponding interval. If the
rates of exchanges are so fast, that there are more than one ex-
change points between two sampling points, there must be time
slices without sampling point. In the case of such ‘dummy’ slices
only the density matrix is propagated to the end of this time slice.
The fid of the spin set (scan) is the union of the fids of the time
slices and the spectrum of the whole system is calculated as the
Fourier transform of the sum of the scans. This method is described
in detail in Ref. [20].

As the exchange is handled as a propagating effect of the den-
sity matrix, the whole exchanging spin system (including the spins
of all conformers) can be simulated by calculating with only one
static (only J-coupled) spin set. Therefore the basis set used for
the simulation is made of the basis functions of one spin set. The
size of basis set is �2n where n is the number of nuclei in the spin
set. In fact the Hamiltonian, the density matrix and the precession
operator blocks according to the coherence levels and the size of

the largest block is only n
n=2

� �
. This size still means an exponen-

tially scaling memory requirement but is significantly smaller than
the memory needed for the conventional calculations [8–17] using
density matrix blocks. The RAM requirement of the program is
independent of the number of exchanging sites.

Fig. 1. Propagation of the (a) average (b) individual density matrix. Ticks show the points of detection (where fid points are calculated) and dots show the points of exchange.
As an example, the propagators (P and PAB, PCD) of an exchanging AB M CD spin system are shown for both calculations.
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