

Available online at www.sciencedirect.com

Journal of Magnetic Resonance 180 (2006) 305-310

www.elsevier.com/locate/jmr

Magnetic Resonance

Communication

Orientation of TOAC amino-acid spin labels in α -helices and β -strands

Derek Marsh *

Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany

Received 8 December 2005; revised 7 February 2006 Available online 28 February 2006

Abstract

The orientation of α -helices or β -strands, e.g., in membranes, can be determined from EPR order parameters of (2,2,6,6-tetramethylpiperidine-1-oxy-4-amino-4-carboxylic acid) TOAC amino-acid spin labels incorporated in the polypeptide backbone. This requires knowledge of the inclination of the nitroxide axes, relative to the α -helix or β -strand axis. Crystal structures of TOAC-containing peptides are used to derive the spin-label orientation relative to refined α -poly-L-alanine and β -poly-L-alanine structures. The spin-label *z*axes of the two mirror-image TOAC twist-boat conformers are inclined at $13 \pm 2^{\circ}$ and $65 \pm 3^{\circ}$, respectively, to the α -helix axis, or at $25 \pm 3^{\circ}$ and $32 \pm 3^{\circ}$ to the β -strand axis.

© 2006 Elsevier Inc. All rights reserved.

Keywords: TOAC; Nitroxide axes; Order parameter; α-Helix; β-Sheet; EPR

1. Introduction

The 2,2,6,6-tetramethyl-piperidine-1-oxy-4-amino-4carboxylic acid (TOAC; see Fig. 1) nitroxyl amino acid was introduced by Nakaie et al. [1-3] as a means for spin-labelling the backbone of peptides. Because the nitroxide is rigidly coupled to the peptide backbone, measurement of angular order parameters, S_{zz} , from the spin label EPR spectrum provides direct information on the orientation of the secondary structural elements, e.g., in membranes [4,5]. The experimental order parameter, however, provides the orientation of the spin-label group, which must then be related to that of the secondary structural elements.

For uniaxial motional averaging, the EPR order parameter of TOAC in a regular secondary structure is given by:

$$S_{zz} = \langle P_2(\cos\gamma) \rangle \cdot P_2(\cos\theta_z), \tag{1}$$

where γ is the angle that the helix or β -strand axis makes with the director (e.g., membrane normal), and θ_z is the inclination of the nitroxide *z*-axis to the helix or β -strand axis. $P_2(x) = \frac{1}{2}(3x^2 - 1)$ is a second-order Legendre poly-

^{*} Fax: +49 551 201 1501.

E-mail address: dmarsh@gwdg.de.

nomial, and angular brackets indicate a time average over the molecular motion. The EPR order parameters are determined directly from the motionally averaged hyperfine splittings, in the case of fast motion (e.g., [6]), or by simulation in the case of slow motion [7]. To determine the orientational order parameter, $\langle P_2(\cos\gamma) \rangle$, of the helix or β -strand axis (or, in general, the molecular diffusion axis) from the EPR measurements, however, it is necessary to know the angle, θ_z , that the spin-label z-axis makes with the helix or strand axis. In the absence of uniaxial averaging, the static tilt of the α -helix or β -strand axis can only be determined from measurements on aligned samples. This then requires knowledge of the direction cosines ($\cos \theta_x$, $\cos \theta_y$, and $\cos \theta_z$) of all three nitroxide axes, relative to the helix or strand axis (see e.g., [8]).

Several crystal structures of the TOAC amino acid in peptides have revealed that the preferred conformation of the spin-label ring is the twist-boat form, of which there are two possible conformers [9,10]. The purpose of the present communication is to determine the orientation of the TOAC nitroxide to the α -helix axis, when the various TOAC crystal structures are built into the refined coordinates of α -poly-L-alanine [11]. It is found that one TOAC conformer is oriented with the spin-label *z*-axis close to the helix axis, whereas, in the other conformer, the *z*-axis

^{1090-7807/\$ -} see front matter @ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmr.2006.02.007

Fig. 1. TOAC amino acid spin label.

is tilted away from the axis of the helix. A similar determination is made also with the refined coordinates of β -poly-L-alanine [12] to determine the TOAC orientation in β strands. In this case, it is found that the spin-label *z*-axis of both conformers is inclined at a considerable angle to the axis of the β -strands.

2. Conformation of TOAC in a peptide

Crystal structure studies on peptides have indicated a preference of the TOAC ring for the twist-boat conformation, although isolated occurrences of a near boat conformer and an approximate chair conformation are also found [9,10].

Of interest for the orientation of the TOAC spin label in peptides, is the orientation of the nitroxide $p-\pi$ orbital (*z*-axis) relative to the NC^{α} C' plane. The nitrogen $p-\pi$ orbital is oriented perpendicular to the C^{γ}₁(C^{γ}₂)N^{δ}O^{δ} plane (cf. Fig. 1). The normal to the plane is defined by the vector

$$\mathbf{z} = \mathbf{C}_{1}^{\gamma} \mathbf{N}^{\delta} \times \mathbf{N}^{\delta} \mathbf{O}^{\delta},\tag{2}$$

where C_1^{γ} is the (pro-L)C^{γ} atom. With appropriate permutation, the **z**-vector can alternatively be defined, in terms of the vector $C_2^{\gamma}N^{\delta}$, where C_2^{γ} is the (pro-D)C^{γ} atom. The nitroxide *x*-axis lies along the N-O bond and the *y*-axis lies closest to the C_1^{γ} -N^{δ} bond.

The normal to the $NC^{\alpha}C'$ plane is defined correspondingly by

$$\mathbf{n} = \overline{\mathbf{C}^{\alpha} \mathbf{N}^{\delta}} \times \overline{\mathbf{C}^{\alpha} \mathbf{C}'},\tag{3}$$

where the direction of **n** lies closest to the C^{α} - C_1^{β} bond. The angle θ between the nitroxide *z*-axis and the normal to the NC^{α}C' plane is then given by

$$\cos \theta = \mathbf{z} \cdot \mathbf{n} / (|\mathbf{z}||\mathbf{n}|). \tag{4}$$

The inclination of the nitroxide z-axis to the NC^{α}C' plane is the complement of θ . The dihedral angle, ω , between the z and **n** vectors is given correspondingly by

$$\cos \omega = \frac{\left(\mathbf{z} \times \overline{\mathbf{C}^{\alpha} \mathbf{N}^{\delta}}\right) \cdot \left(\mathbf{n} \times \overline{\mathbf{C}^{\alpha} \mathbf{N}^{\delta}}\right)}{\left|\mathbf{z} \times \overline{\mathbf{C}^{\alpha} \mathbf{N}^{\delta}}\right| \left|\mathbf{n} \times \overline{\mathbf{C}^{\alpha} \mathbf{N}^{\delta}}\right|},\tag{5}$$

where vertical bars indicate the lengths of the corresponding vectors.

Table 1 lists the values of the tilt angle θ and the dihedral angle ω between the nitroxide z-axis and the normal

г	al	h	le	1	
r	a	U	e	1	

Angle, θ , between the nitroxide z-axis and the normal to the NC^{α}C' plane, and their dihedral angle, ω , for TOAC peptide derivatives

Peptide/residue ^a	$\theta(^{\circ})$		$\omega(^{\circ})$		Ref.
	$\overline{C_1^{\gamma}N^{\delta}O^{\delta b}}$	$C_2^{\gamma}N^{\delta}O^{\delta c}$	$C_1^{\gamma}N^{\delta}O^{\delta b}$	$C_2^{\gamma}N^{\delta}O^{\delta c}$	
I/TOAC ¹ A	64.9	61.6	64.7	61.4	[8]
I/TOAC ¹ B	66.9	66.0	66.1	66.1	
II/TOAC ¹	61.1	62.5	60.7	62.2	[8]
II/TOAC ⁴	62.8	67.0	62.9	67.1	
III/TOAC ¹	64.8	66.2	64.6	66.0	[10]
IV/TOAC ⁴ A	63.3	59.3	63.1	59.1	[9]
IV/TOAC ⁴ B	62.1	64.0	62.2	64.1	
IV/TOAC ⁸ A	63.9	66.3	63.8	66.3	
IV/TOAC ⁸ B	63.8	68.0	62.8	67.2	
V/TOAC ¹	-61.7	-57.1	-60.8	-56.2	[10]
VI/TOAC ¹	-60.9	-62.2	-61.1	-62.3	[10]
VI/TOAC ²	-62.2	-67.2	-62.2	-67.2	

^a Peptides and coordinates: I, Z-TOAC-(L-Ala)₂-NH*t*Bu, CCDC 123753; II, *p*BrBz-TOAC-(L-Ala)₂-TOAC-L-Ala-NH*t*Bu, CCDC 123754; III, Boc-TOAC-[L-(α Me)Val]₄-NH*t*Bu, CCDC 257672; IV, trichogin GA IV *n*Oct-[TOAC^{4,8}, Leu-OMe¹¹], CCDC 120048; V, Ac-TOAC-(Aib)₃-L-Trp-Aib-O*t*Bu, CCDC 257673; VI, Fmoc-(TOAC)₂-(Aib)₄-O*t*Bu, CCDC 257674. A and B indicate two inequivalent molecules in the asymmetric unit.

^b Nitroxide *z*-axis defined as normal to $(pro-L)C_1^{\gamma}N^{\delta}O_{-}^{\delta}$ plane.

^c Nitroxide *z*-axis defined as normal to $(pro-D)C_2^{\gamma}N^{\delta}O^{\delta}$ plane.

to the NC^{α}C' plane, for various TOAC peptide crystal structures. Differences between the values deduced taking the C^{γ}₁N^{δ}O^{δ} normal or the C^{γ}₂N^{δ}O^{δ} normal in the definition of the nitroxide *z*-axis indicate slight deviations from coplanarity, corresponding to a small pucker about the N^{δ} nitrogen. The near coincidence of the values for the inclination θ and the dihedral ω , arises because the z and **n** vectors are almost perpendicular to the C^{α}N^{δ} vector. This somewhat simplifies visualisation of the orientation of the TOAC nitroxide in peptide helices.

The peptides divide themselves into two groups of twistboat conformers. The larger group, with $\theta = +(64.1 \pm 2.3)^{\circ}$ and $\omega = +(63.9 \pm 2.3)^{\circ}$, corresponds to the conformer with ⁶T₂ ring puckering [10], where 6 refers to the (pro-L)C₁^{γ} and 2 to the (pro-D)C₂^{γ} atom. The smaller group, with $\theta = -(61.9 \pm 3.2)^{\circ}$ and $\omega = -(61.5 \pm 3.5)^{\circ}$, corresponds to the mirror-image conformer with ²T₆ ring puckering, except that peptide V is closer to the ³T₁ twist-boat disposition [10].

3. Orientation of TOAC in an α-helix

To determine the orientation of the TOAC nitroxide axes in an α -helix it is necessary to transform the TOAC local axis system (x, y, and z) to that of the α -helix (X, Y, Z)

$$\mathbf{X} = \mathbf{R}_{z}(\gamma)\mathbf{R}_{x}(\beta)\mathbf{R}_{z}(\alpha)(\mathbf{x} - \mathbf{x}_{o}),$$
(6)

where \mathbf{x}_{o} is the position of the origin of the TOAC axes in the helix axis system. \mathbf{R}_{i} are rotation matrices and α , β , and γ are the Euler angles relating the two systems of axes. Download English Version:

https://daneshyari.com/en/article/5407580

Download Persian Version:

https://daneshyari.com/article/5407580

Daneshyari.com