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Abstract

Diffusion ordered spectroscopy (DOSY) is a powerful two-dimensional NMR method to study molecular translation in various sys-
tems. The diffusion coefficients are usually retrieved, at each frequency, from a fit procedure on the experimental data, considering a
unique coefficient for each molecule or mixture. However, the fit can be improved if one regards the decaying curve as a multiexponential
function and the diffusion coefficient as a distribution. This work presents a computer code based on the Hopfield neural network to
invert the data. One small-molecule binary mixture with close diffusion coefficients is treated with this approach, demonstrating the effec-

tiveness of the method.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The diffusion coefficient is an important property in
studies of mixtures, providing the size and structural infor-
mation of the particles [1]. In nuclear magnetic resonance,
the diffusion ordered spectroscopy, DOSY experiments [2],
measure this property of compounds. This technique is
based on the application of the gradient field, which
encodes and decodes the translational diffusion motion of
the components in samples. The signal attenuation is
detected and it depends on the gradient strength, the wait-
ing time between the gradients and the diffusion coefficient
of the molecules.

In general, the NMR spectrometers work with a fit pro-
cedure of the intensity decaying function, providing the dif-
fusion coefficient as a parameter. The distribution function
can also be obtained using the inverse Laplace transform.
If there is more than one component in the sample with
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closed diffusion coefficient, the decaying intensity is com-
posed of these contributions and the distribution function
concept is more adequate to deal with these problems.

To obtain the diffusion coefficient distribution from
these experiments, one has to solve a linear inverse
problem [3]. Generally, these inverse problems are clas-
sified as an ill-conditioned problem with a decreasing
character of the singular values and special methods,
e.g., Tikhonov regularization [4,5], truncated singular
value decomposition [5,6] and inverse Laplace transform
[7], have to be employed.

In this work, an alternative method based on the Hop-
field neural network is proposed. Experimental data of an
equimolar mixture of Brucine and Isopinocampheol was
used to emphasize the applicability of the method. This
approach has been also successfully tested to recover the
transverse relaxation time distribution from spin-echo
experimental data [8], macromolecular properties from
light scattering experimental data [9], and the probability
density function from experimental positron annihilation
lifetime spectra [7].
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2. DOSY—theoretical background

In nuclear magnetic resonance the diffusion motion is
studied by the diffusion ordered spectroscopy—DOSY.
This technique is based on the application of pulsed field
gradient and each infinitesimal volume in the sample is
encoded. The angular frequency of nuclear spins depends
on its position and the magnetogyric ratio, 7y, [10]

o(r) = —yB(r). (1)
The magnetic field gradient is aligned with the principal
magnetic field, conventionally in the z direction. The appli-

cation of the gradient induces a change in the phase angle
for each spin as,

P(z) = yg.2t, (2)

with g, being the gradient strength and z the coordinate of
spin at time ¢. The total change in the phase angle has
another important contribution, related with the principal
magnetic field, ¢ (z) = yBot + yg.zt.

The pulse sequence in DOSY is similar with the spin-echo
experiments. One of the most popular DOSY sequences, the
BPPSTE (bipolar pulses with stimulated echo), may be
described as follows: two pulsed field gradients with equiva-
lent intensity and opposite signs are applied before and after
a hard 180° pulse. This 180° pulse is applied after the first 90°
and before the second 90° pulse. This second hard 90° pulse
tips the magnetization towards the z-axis, and the molecule
then diffuses aligned with main field. After the diffusion
delay, a third 90° pulse is issued, followed by the second
180° pulse, flanked by two pulsed field gradients, also with
equivalent intensity and opposite signs, aiming at regrouping
the magnetization in the transversal plane, resulting in a
Hahn-echo[11]. To note a change in the phase angle, the sec-
ond gradient has to be applied after the spins moved, in a A
interval. This interval is chosen depending on the diffusion
coefficient of the particles.

Within the A interval, the change of the phase angle is
proportional to the strength of the field gradient. The
coherence of the signal is lost and this provides an attenu-
ation of the registered signal. To determine the diffusion
coefficient of the particles, a set of experiments has to be
realized varying the gradient amplitude. This relation can
be expressed by [10,11],

I(q) = Iyexp(—Dg*A'), (3)

being [ the intensity of the signal, D the diffusion coeffi-
cient, A’ = A — §/3, with A the diffusion time and ¢ the gra-
dient duration; ¢ =ygd, with y being the magnetogyric
ratio and g the gradient amplitude.

Generally, the diffusion coefficient is recovered in a spe-
cific chemical shift by a fitting procedure of the Eq. (3) and
this methodology provides a diffusion coefficient as an
appropriate parameter. Nevertheless, if the signal analyzed
in the experiment is overlapped, commonly in mixtures, the
diffusion coefficients for each component cannot be
retrieved.

In a multi-component solution, one has to consider the
signals as a sum of several decaying functions [11,12],

1(g,v) = > Au(va) exp(~D’A), (4)

with 4,,(v,,) being the intensity of the signal in NMR exper-
iment at the frequency v,,.

With a continuous distribution of the diffusion coeffi-
cients at a particular v frequency, the Eq. (4) can be
expressed as,

1(s) = [ exp(~Ds)f(D)aD, (5)

with s = ¢?A’ and f(D) the distribution function of the dif-
fusion coefficients. The diffusion coefficient distribution has
been obtained in NMR spectrometers by the inverse
Laplace transform in the CONTIN program [8,10,12]. This
code, developed by S.W. Provencher, solves the problem by
numerical methods similar to the Tikhonov regularization
approach, with the regularization parameter being chosen
in a statistic set of data. In this work, the Hopfield neural
network was proposed.

3. Inverse problems and Hopfield neural network

In a variety of problems in science, some microscopic
properties only can be obtained by the solution of model
functions that describes macroscopic experimental data.
These model functions, as Eq. (5), are commonly known
as Fredholm integral equation. The retrieval of the micro-
scopic property, f(D), from the experimental data, I(s), is
an ill-conditioned inverse problem and requires some
appropriate techniques to be solved [13].

The standard procedure was adopted to calculate the
function f in Eq. (5) from data I(s) and 4 = exp(—sD). It
consist in discretize the variable s in an appropriate interval
and convert the integration in a convenient weighted sum
to get Kf =1, being I =[I(s), I(s2),...,I(s,)]", £ = [f(D1),
f(Ds),..., f(D,)]" and K the (m x n) matrix, defined as

W1A(D1,S1) WzA(Dz,S]) WnA<Dn,S1)

W1A(D1 s S2) W2A (Dz, Sz) W,,A (Dn, Sz)
K= ,

WiA(D1,5,)  w2A(D2,s1) Wy A(Dyy )

in which the wy,w»,...,w, are the appropriate coefficients
determined by the quadrature to represent the integration
equation.

In the Hadamard sense [14], an ill-conditioned inverse
problem is established if the solution does not exist, is
not unique or continuous in R”. The decreasing character
of the singular values in the K matrix induces an inverse
matrix presenting values bigger than the original one.
Therefore, in a problem with m=mn, if the solution
f=K ' I is tried, the experimental error in I matrix is
magnified and a wrong answer to the inverse problem is
obtained.
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