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Abstract

Simple scaling laws are useful tools in understanding the effect of changing parameters in MRI experiments. In this paper the general
scaling behavior of the transverse relaxation times is discussed. We consider the dephasing of spins diffusing around a field inhomoge-
neity inside a voxel. The strong collision approximation is used to describe the diffusion process. The obtained scaling laws are valid over
the whole dynamic range from motional narrowing to static dephasing. The dependence of the relaxation times on the external magnetic
field, diffusion coefficients of the surrounding medium, and the characteristic scale of the field inhomogeneity is analyzed. For illustration
the generally valid scaling laws are applied to the special case of a capillary, usually used as a model of the myocardial BOLD effect.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The transverse relaxation times T2 and T �2 are funda-
mental quantities in MRI, especially for characterizing tis-
sues and their properties. The influence of static magnetic
field inhomogeneities on relaxation times is of special inter-
est in understanding relaxation processes inside the voxel.
It is well known that susceptibility contrasts, external mag-
netic fields and diffusion influences the relaxation times T2

and T �2. Obviously it is useful to understand the scaling of
relaxation times with respect to their parameters in order to
describe effects of parameter changing in a simple way. For
example scaling laws can be used to predict the effects of
changing external magnetic field strength or concentration
of contrast agents. It is important to know how relaxation
times vary subjected to changes in these characteristic
quantities. Despite this fact papers dealing with this issue
are sparse in the literature. Weisskoff et al. [1] discussed
the scaling behavior of the relaxation rate R2 in the context
of microscopic susceptibility variations. Starting from the

Bloch-Torrey-Equation [2] they obtained two special scal-
ing laws and verified them by extensive numerical simula-
tion. Employing the strong collision approximation [3–5]
we give a rigorous derivation of a generalized scaling law
for both transverse relaxation times T2 and T �2. After con-
sidering the basic model of a field inhomogeneity inside a
voxel we use well known results of Bauer et al. [3] in order
to obtain the scaling laws. To give an example these results
are applied to a cylindrical geometry which is commonly
used as a model of a vascular network.

2. Basic model

We consider an arbitrary distribution of magnetic mate-
rial G inside a voxel causing a susceptibility shift Dv =
vi � ve compared to the surrounding medium with volume
V (see Fig. 1). The volume fraction g of material inside the
voxel is given by g = G/(G + V). Dephasing takes place in
the remaining volume V of the voxel around the magnetic
perturber G, in which the diffusion of the spins is deter-
mined by the diffusion coefficient D.

The z-component of the magnetic field caused by the
inhomogeneity G is given by [6,7]
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where r 0 represents the coordinates inside the volume of the
perturber G and r the coordinates of the surrounding vol-
ume V (see Fig. 1). This means that only the field from
the magnetic inhomogeneity G inside the voxel influences
the dephasing of spins in V and the effects of neighboring
voxels are neglected. The external magnetic field B0 induces
the local resonance frequency x(r) = cBz(r) which can be
written as

xðrÞ ¼ dxf ðrÞ; ð2Þ

where the characteristic frequency is given by

dx ¼ cDvB0; ð3Þ

which contains the susceptibility properties of the perturber
and the external magnetic field, while the geometric
function
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jr� r0j ð4Þ

defines the shape of the perturber. Thus we are able to
separate the susceptibility properties of the inhomogeneity
G from its distribution inside the voxel. This offers the
possibility to investigate the influence of each part
independently.

In order to derive the scaling laws some independent
approximations are necessary. First we obtain the correla-
tion time s by using a mean time approximation that con-
siders a monoexponential time behavior of the correlation
function. The second one is the strong collision approxima-
tion which is used to simplify the diffusion process around
field inhomogeneities. The last approximation is again a
mean time approximation which considers the magnetiza-
tion decay as monoexponential also. As shown in previous
work [8] a relation between the correlation function and the
magnetization decay exists in the gaussian approximation.
As it is not known if the considerations of it are fullfiled

generally [9] we use the strong collision approach to de-
scribe the magnetization decay.

We start with calculating the correlation time s which is
required to obtain the magnetization decay. To investigate
the dynamic property of the problem we use the two-point
correlation function of the stochastic field fluctuations to
which a spin is subjected. It is defined as

KðtÞ ¼
Z

V
d3r

Z
V

d3r0 xðrÞpðr; r0; tÞpðr0Þxðr0Þ; ð5Þ

where p(r, r0, t) is the probability density of finding a spin
at point r after time t with the initial (t = 0) position r0, and
p(r0) specifies the probability density function of the equi-
librium distribution. In our case the latter is identical with
the spin density, which we assume to be homogeneous, i.e.
p(r0) = 1/V. Assuming free diffusion of spins within V, the
probability p(r, r0, t) is simply the Green’s function of the
diffusion equation where D is the diffusion coefficient

o

ot
pðr; r0; tÞ ¼ Dr2pðr; r0; tÞ ð6Þ

or

pðr; r0; tÞ ¼ etDr2

dðr� r0Þ; ð7Þ

with the reflectory boundary conditions orp(r, r0, t) = 0 at
the surface of the magnetic perturber and the voxel bound-
aries. In the case of permeable membranes the probability
function p(r, r0, t) has to fulfill the radiation boundary con-
ditions orp(r, r0, t) = kp(r, r0, t) at the surfaces of the inho-
mogeneities where k is the permeability of the membrane.
Insertion of the probability density Eq. (7) and p(r0) into
the definition of the correlation function Eq. (5), results in

KðtÞ ¼ 1

V

Z
V

d3rxðrÞetDr2

xðrÞ: ð8Þ

Using Eq. (2) the correlation function at t = 0 is given by

Kð0Þ ¼ 1

V

Z
V

d3rx2ðrÞ ¼: hx2ðrÞi ¼ dx2hf 2ðrÞi: ð9Þ

The result K(0) � dx2 is the same as from Jensen and
Chandra [10], Eq. (18) and in complete agreement with
the more general Eq. (1) given by Sukstanskii and Yablon-
skiy [11]. In general the correlation function K(t) does not
exhibit a single exponential decay as is often assumed [12].
This hampers a simple determination of the correlation
time, i.e. K(t) � e�t/s. However, a proper definition of the
correlation time is to define it as the mean relaxation time
of the correlation function, i.e. according to ref. [13],

s ¼
Z 1

0

dt
KðtÞ
Kð0Þ : ð10Þ

In fact, it has been demonstrated that this definition pro-
vides the best single exponential approximation of the cor-
relation function. A commonly used approximation for the
correlation function is

Fig. 1. Voxel containing a magnetic inhomogeneity G with susceptibility
vi and dephasing volume V with susceptibility ve. All coordinates inside G

are represented by primed vectors r 0 and all coordinates of V by unprimed
vectors r.
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