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Abstract

The nonlinear dependence between the logarithm of the diffusion weighted signal, lnS, and the b-value, b, has often been interpreted
as a manifestation of two physically distinct compartments, resulting in a biexponential form of the signal. This model fits to experimen-
tal data, however, has failed to yield realistic compartment sizes, severely jeopardizing the use of DWI to infer structural information on
a cellular level. It has been hypothesized that the biexponential behavior can be attributed to the effect of confining boundaries that
restrict diffusion in individual physical compartments. This interpretation is based on the analysis of diffusion in the presence of imper-
meable interfaces for short diffusion times such that the layer in which diffusion is affected by the boundary is thin as compared with the
dimensions of the whole compartment. This model system is analyzed from the point of view of the cumulant expansion of the diffusion-
weighted signal that results in a Taylor expansion of lnS in powers of b. Termination of this expansion to a polynomial form provides an
excellent accuracy for small b-factors, but the series diverges for large b. The convergence of the series is studied, yielding a large range of
b-values in which the absolute error of terminating the series at the second term remains smaller than 1% relative to the signal magnitude
without diffusion weighting. With this accuracy, the signal in the studied model can be described as lnS � �A Æ bD + B Æ (bD)2, where the
parameters A and B can be expressed in terms of correlation functions of molecular velocity. Fitting of these parameters to the exact
signal is more stable than for the three parameters of the biexponential function. This description fails for large b, for which the cumulant
expansion diverges. The signal at even larger b-values is proportional to 1/b, 1/b3/2, and 1/b2 in one-, two-, and three-dimensional sys-
tems, respectively.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Numerous studies, see, e.g., [1,2] and references therein,
give evidence that the normalized diffusion-weighted signal
from a single voxel can be described as a weighted sum of
two exponential functions

S ¼ ð1� wÞ expð�bD1Þ þ w expð�bD2Þ; ð1Þ
where b is the b-value, D1 and D2 are two apparent diffu-
sion coefficients, hereafter D1 > D2 for the definiteness,
and w is the volume fraction of the slow-diffusion compart-

ment. The signal in Eq. (1) is commonly termed the biexpo-
nential diffusion.

This form of the signal would be exact for samples con-
sisting of two compartments without exchange. The exper-
imentally observed weight of the compartment with slow
diffusion is about 20–30% [1,3]. The latter fact presents a
serious problem concerning a straightforward interpreta-
tion of these compartments as e.g., the intracellular and
the extracellular volumes with the slow and the fast diffu-
sion, respectively, since the weight of the intracellular com-
partment is typically 80% [2,4,5].

A more elaborate model with an exchange term between
compartments [6] (the Kärger–Andresko equation) results
in a very reasonable signal behavior with time dependence
of the apparent diffusion coefficients, but it fails to resolve
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the problem of unrealistically small size of the compart-
ment with slow diffusion [6]. Latour et al. [7] obtained
the apparent diffusion coefficient for long times in tissue
consisting of densely packed cells, taking into account the
finite cell size and permeability of membranes. However,
the accuracy of the developed approximation of effective
medium remains unclear. The authors did not address the
nonlinear dependence between lnS and the b-factor.

Schwarcz et al. [8] seemingly ruled out the possibility to
interpret the biexponential diffusion in relation to the pres-
ence of an intracellular compartment. They showed that
the biexponential signal decay is observed in the cold-in-
jured mouse brain, where the membranes are disintegrated.
The same was shown to be the case for centrifuged red
blood cells, having disintegrated membranes. Indepen-
dence of the weights of two compartments on the actual
volume fraction of cells was recently demonstrated by
Ababneh and colleagues [9] by a comparison of endemic
and normal muscle tissue in a rat model.

These results are in agreement with another interpreta-
tion of the biexponential diffusion proposed by Sukstanskii
and colleagues [10–12]. They related the ‘‘hidden’’ com-
partment with slow diffusion to the layers of water adjacent
to impermeable or partially permeable membranes which
are abundant in biological tissue. This idea is based on a
simple model of diffusion with a coefficient D in a slab
restricted by two impermeable parallel boundaries. For
short times, t, such that the diffusion length, (Dt)1/2 is
shorter that the slab thickness, L, the apparent diffusion
coefficient D2 does not depend on L and D1 � D. The
weight, w, of the compartment with low diffusivity scales
as (Dt)1/2/L.

This model may serve as a basic building block in
explaining the behavior of the apparent diffusion coefficient
at short times, providing a relation between the signal and
the specific surface, r, (the surface to volume ratio) in por-
ous media [13–15]. In this case the diffusion length should
be shorter than the typical pore size. The volume with
reduced diffusivity has the weight of the order of (Dt)1/2r.

This volume fraction remains small within the validity
range of the model, and the problem of unphysiological
predictions therefore persists. Nonetheless, it is theoretical-
ly attractive by its explanation of the signal being biexpo-
nential, and by its impressive accuracy in fitting the
expression Eq. (1) to the exact signal [11].

In this paper, we advocate an alternative approach to
describe the nonlinear dependence between the logarithm
of the diffusion-weighted signal and the b-factor. We
refrain from building models of diffusion at the cellular
level, adverting instead to an ab initio property of diffu-
sion-weighted signal which is expressed by the following
expansion in powers of b:

ln S ¼ �A � bDþ B � ðbDÞ2 þ C � ðbDÞ3 þ � � � ; ð2Þ
where D is the diffusion coefficient for free diffusion. It is
reasonable to define the apparent diffusion coefficient as
the slope of �ln (S) at b = 0. According to this definition,

the coefficient A accounts for the time dependence of the
apparent diffusion coefficient, Dapp = AD. In homogeneous
media A = 1, while B, C, and all higher coefficients turn to
zero. The expansion in Eq. (2) follows from an expansion
of S in powers of the applied gradient, which is a particular
case of the cumulant expansion as discussed below. We
shall loosely apply the same term ‘‘cumulant expansion’’
to Eq. (2) in the context of the present paper.

The cumulant expansion, Eq. (2), is in fact a Taylor
expansion. Terminating this series provides for a good
approximation to the signal when bD is small. This results
in a polynomial dependence between lnS and bD, which
diverges after a certain bD-value. Including more terms
helps to increase the accuracy only for small bD. For large
values, the series diverges. In this case the signal takes a
form that cannot be approximated by the exponential of
a polynomial and the series in Eq. (2) cannot be applied.
The cross-over between the domains of small and large
bD can be termed the radius of convergence, following
the reason explained below.

To serve as a practical approximation, this radius must
be sufficiently large to incorporate measurements with typ-
ical experimental b-values. We address this issue using the
basic model of diffusion near an impermeable wall in line
with a number of previous studies, [11,12,16,17]. The possi-
ble applications and restrictions of this basic model is dis-
cussed in Section 3. We focus on the simplest
measurement sequence with narrow gradient pulses that is
used in the q-space imaging and determine the coefficients
in Eq. (2). It turns out that the cumulant expansion con-
verges for realistic b-values achievable in human scanners
and

ffiffiffiffiffi
Dt
p

� L. For example, terminating expansion Eq.
(2) at the second term for

ffiffiffiffiffi
Dt
p

¼ 0:01L results in an abso-
lute error which increases with bD and reaches 0.1% of
the signal in the absence of diffusion weighting at bD = 2.
This absolute error remains smaller than 1% for b < 8 ms/
lm2. This means that experimental data obtained with b-
factors b < 2 ms/lm2, which is typical for human scanners,
can be fitted with the two first terms of the expansion in Eq.
(2). Such a description involves only two parameters, one of
which is the apparent diffusion coefficient Dapp while the
other describes the curvature of the dependence between
lnS and b. A further advantage is that the cumulant expan-
sion of the signal enables to trace the relation between these
parameters on one hand and the pulse sequence used as well
as the structure of the media investigated, on the other. The
latter is represented by the correlation functions of molecu-
lar velocity (the cumulants) that may take a rather compli-
cated form. The cumulant expansion of the signal has been
discussed in earlier MR studies, e.g., [16,18–21]. We com-
ment on some of these works in Section 3.

The paper is organized as follows: in the next section, we
discuss shortly the cumulant expansion of the signal, that
gives rise to Eq. (2). The coefficients in Eq. (2) are calculat-
ed for the diffusion between impermeable walls in the
approximation of narrow gradient pulses. The discussion
following in Section 3 focuses on the convergence range
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