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Abstract

An optimal control algorithm for generating purely phase-modulated pulses is derived. The methodology is applied to obtain broad-
band excitation with unprecedented tolerance to RF inhomogeneity. Design criteria were transformation of Iz fi Ix over resonance off-
sets of ±25 kHz for constant RF amplitude anywhere in the range 10–20 kHz, with a pulse length of 1 ms. Simulations transform Iz to
greater than 0.99 Ix over the targetted ranges of resonance offset and RF variability. Phase deviations in the final magnetization are less
than 2–3� over almost the entire range, with sporadic deviations of 6–9� at a few offsets for the lowest RF (10 kHz) in the optimized
range. Experimental performance of the new pulse is in excellent agreement with the simulations, and the robustness of the excitation
pulse and a derived refocusing pulse are demonstrated by insertion into conventional HSQC and HMBC-type experiments.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Although dual compensation for RF inhomogeneity/
miscalibration and chemical-shift offset effects in excitation
has been difficult to achieve [1–13], broadband excitation
by optimized pulses (BEBOP) [14–17] has been shown to
be an effective solution for RF tolerance of 10–15%, which
is typical of calibrated pulses output by high-quality RF
probes. Broadband in this context refers to a pulse capable
of uniformly exciting the entire 13C chemical-shift range at
field strengths of 800–900 MHz, requiring a bandwidth of
40–50 kHz.

Broadband pulses which tolerate an even higher degree
of RF inhomogeneity could also be useful. NMR-spectros-
copy on natural products is one potential application. For
example, calibration of 13C-pulses is extremely difficult for
natural abundance samples at very low concentration.
Moreover, significant variations in pulse length can be
caused by varying salt concentrations. Sufficient RF toler-
ance would remove the need for painstakingly accurate
pulse calibrations, which are also important for optimal
sensitivity of many complex multidimensional experiments
or the automated acquisition of a large number of strongly
differing samples.

Encouraged by the success of optimal control theory in
designing broadband pulses with outstanding performance,
we therefore consider a problem which has been resistant
to a successful solution: nearly calibration-free broadband
excitation. To accommodate the majority of 13C probes in
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use, the pulse should operate equally well for a peak RF
output anywhere in the range 10–20 kHz (25–12.5 ls pulse
width).

In addition, while the BEBOP pulses obtained to date
exhibit nearly ideal performance, their rapid and extreme
amplitude jumps can require some monitoring and adjust-
ment of system hardware, primarily with regard to amplifi-
er linearity and accurate output of the waveform
generators. We have demonstrated that this is not a prob-
lem for modern NMR-consoles with linearized amplifiers
and fast amplitude and phase switching times. For
NMR-spectrometers equipped with non-linearized amplifi-
ers, however, constant amplitude pulses would be more
convenient.

For a given bandwidth and tolerance to RF variability,
an optimal control algorithm which allows amplitude/
phase modulation and limits the maximum RF amplitude
produces a purely phase-modulated pulse when the pulse
length is reduced below a certain level [16]—the algorithm
pins the RF to its maximum allowed value at all times
during the pulse in attempting to optimize pulse perfor-
mance. For longer pulse lengths, the algorithm is able
to converge to a solution using lower, time-variable values
of the amplitude without having to consider larger RF
values. Instead of reducing pulse length by trial-and-error
until constant amplitude pulses are found, it is more effi-
cient to derive them directly, which is the topic of the next
section. The results of the new procedure for deriving
phase-modulated pulses and their applications in HSQC
and HMBC-type experiments are discussed in a following
section.

2. Theory and methods

Details of the optimal control procedure, as it relates to
broadband excitation in NMR, and the algorithms devel-
oped so far are discussed in [14,15,17]. More general infor-
mation on broadband excitation [1–13], optimal control
theory [18–21], and its use in NMR [22–25] can be found
in the references. In this section, we derive the modifica-
tions to our previous treatment that are required to maxi-
mize the performance of a pulse modulated only in phase.

2.1. Optimal control theory: application to excitation

We first provide a synopsis describing those aspects of
the methodology that are unaffected by the transition to
a phase-modulated pulse. During the time interval [t0, tp],
we seek to transfer initial magnetization M ðt0Þ ¼ ẑ to the
target final state F ¼ x̂ for a specified range of chemical-
shift offsets and a desired degree of tolerance to RF
inhomogeneity or miscalibration. The trajectories M (t)
are constrained by the Bloch equation

_M ¼ xe �M . ð1Þ
The effective RF field xe in angular frequency units (rad/s)
can be written in the rotating frame as

xe ¼ x1ðtÞ½cos /ðtÞx̂þ sin /ðtÞŷ� þ Dxẑ

¼ xrfðtÞ þ Dxẑ;
ð2Þ

which encompasses any desired modulation of the ampli-
tude x1 and phase / of the pulse.

Constraints on the optimization are incorporated into
the formalism using the technique of Lagrange multipliers
(see for example, [26]), with a multiplier ki for each con-
straint. The vector Bloch equation thus introduces a vector
Lagrange multiplier k. Some suitable measure of pulse per-
formance, the cost function U, is then defined as the object
of the optimization. One then finds that k must also obey
the Bloch equation at each time for the cost to be opti-
mized, with its value at the end of the interval given by
k (tp) = oU/oM.

2.1.1. Application to phase modulation

Since optimal control theory is a generalization (e.g.,
[21]) of the classical Euler–Lagrange formalism, a ‘‘hamil-
tonian’’ h can be defined in terms of k and the constraints
on the possible trajectories as

h ¼ k � ðxe �MÞ ¼ xe � ðM � kÞ. ð3Þ

In terms of general controls ui, the final conditions that are
necessary for the cost to be optimal are that

@h
@ui
¼ 0 ð4Þ

at all times throughout the evolution. If Eq. (4) is not equal
to zero, it represents a gradient giving the proportional
adjustment to make in the controls for a more optimal
solution.

In our previous work, the controls were equal to xe, giv-
ing oh/oxe = M · k. As noted in the previous section, since
very few spectrometers implement frequency modulation
directly, the controls were restricted to the transverse,
(x,y), components represented by xrf in Eq. (2). The z com-
ponent of M · k was therefore irrelevant in adjusting the
controls.

For a constant amplitude phase-modulated pulse, x1 in
Eq. (2) is time-independent and the only control is the
phase, /. Plugging xe from Eq. (2) into Eq. (3) and setting
oh/o/ = 0 gives, together with the previous conditions on
the evolution of M and k, the following requirements to
optimize the cost:

_M ¼ xe �M; Mðt0Þ ¼ ẑ ð5Þ
_k ¼ xe � k; kðtpÞ ¼ @U=@M ð6Þ
xrf � ðkMz �MkzÞ ¼ 0. ð7Þ

2.1.2. The cost function
The dot product U = M (tp) Æ F is one possible choice for

quantifying the degree to which M (tp) = F, which gives
k (tp) = F from Eq. (6) [14–16]. For alternative cost func-
tions see Ref. [17]. For any of the cost functions, the pro-
cedure is the same–M and k obey the Bloch equation,
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