Available online at www.sciencedirect.com JMR Journal of Magnetic Resonance www.elsevier.com/locate/jmr Journal of Magnetic Resonance 179 (2006) 38-48 # Symmetry-based recoupling of ¹⁷O⁻¹H spin pairs in magic-angle spinning NMR Jacco D. van Beek a,1, Ray Dupree b, Malcolm H. Levitt a,* ^a School of Chemistry, Southampton University, Highfield, Southampton, SO17 1BJ, UK ^b Department of Physics, University of Warwick, Coventry, CV4 7AL, UK Received 17 September 2005; revised 31 October 2005 Available online 23 November 2005 #### Abstract We have performed magic-angle-spinning solid-state NMR experiments in which protons are recoupled to oxygen-17 nuclei by applying a symmetry-based recoupling sequence at the proton Larmor frequency. Two-dimensional quadrupole-dipole correlation spectra are produced, in which the second-order quadrupolar shift of the oxygen-17 central transition is correlated with the recoupled heteronuclear dipole-dipole interaction. These spectra are sensitive to the relative orientation of the electric field gradient at the site of the oxygen-17 nucleus and the O-H internuclear vector. We also demonstrate experiments in which polarization is transferred from protons to oxygen-17, and show that oxygen-17 signals may be selected according to the protonation state of the oxygen site. We discuss the small observed value of the heteronuclear dipolar splitting in the central-transition oxygen-17 spectra. Keywords: Solid-state NMR; Quadrupolar nuclei; Oxygen-17; Correlation spectroscopy; Symmetry-based recoupling; MAS; Brucite #### 1. Introduction ¹⁷O solid-state NMR of isotopically enriched materials is an important method for studying a wide range of substances, including zeolites [1–3], glasses [4], battery materials [5], and membrane-bound peptides [6]. The NMR of ¹H–¹⁷O pairs is of particular interest for the study of acidic sites and hydrogen-bonded systems [3,7,8] since the ¹⁷O quadrupole interaction and chemical shift tensors are sensitive to local structural perturbations [9]. Furthermore, the magnitude of the ¹H–¹⁷O dipole–dipole coupling, and its relative orientation with respect to the chemical shift and quadrupole coupling tensors of the ¹⁷O nucleus [10] provide additional information. The ¹H–¹⁷O dipole–dipole coupling constant has a magnitude of around 15 kHz in a directly bonded hydroxyl moiety. Although this a considerable interaction, it is difficult to observe, since ¹⁷O nuclei in hydroxyl sites experience a large electric field gradient, leading to a second-order quadrupolar broadening of the ¹⁷O central transition by several kHz at typical magnetic fields. Furthermore, in many samples, strong ¹H-¹H interactions create additional complications. Nevertheless, the ¹H–¹⁷O dipolar coupling has been resolved in static samples by performing Hartmann-Hahn cross-polarization from ¹H to ¹⁷O, while spin-locking the ¹H nuclei by off-resonance irradiation satisfying the Lee-Goldburg condition, in order to reduce the effect of the ¹H-¹H couplings [10]. Two-dimensional spectroscopy was used to correlate the second-order quadrupolar shift of the ¹⁷O central transition with the ¹H-¹⁷O dipolar coupling, allowing determination of the relative orientation of the ¹H-¹⁷O dipolar coupling and ¹⁷O quadrupolar interaction tensors [10]. In this paper, such two-dimensional spectra are termed quadrupole-dipole (QD) correlation spectra. It would be desirable to perform QD correlation experiments under magic-angle-spinning (MAS) conditions, ^{*} Corresponding author. Fax: +44 23 8059 3781. E-mail address: mhl@soton.ac.uk (M.H. Levitt). ¹ Present Address: Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland. since this would allow the ¹H-¹⁷O dipolar coupling information to be combined with chemical site selectivity, parmultiple-quantum magic-angle-spinning (MQMAS) [11,12] or satellite-transition magic-angle-spinning (STMAS) [13,14] are used. Unfortunately, Hartmann-Hahn cross-polarization is problematic for quadrupolar nuclei in the presence of MAS, due to the breakdown of the central-transition spin-lock [15–17]. Alternative schemes, such as those based on REDOR [18-22] or TEDOR [19,23] also have problems, due to the strong homonuclear ¹H-¹H couplings present in many samples. Here we show that these difficulties may be avoided by using symmetry-based recoupling sequences [24–26]. A suitable choice of recoupling symmetry numbers implements ¹H-¹H dipolar decoupling at the same time as ¹H-¹⁷O dipolar recoupling. We demonstrate quadrupoledipolar (QD) correlation spectroscopy under MAS conditions for two different ¹⁷O-labelled molecular systems. The OD correlation spectra have a strikingly different appearance, reflecting their sensitivity to the relative tensor orientations. We also demonstrate significant polarization transfer from the ¹H nuclei to the ¹⁷O central transition, allowing the ¹⁷O spectrum to be edited according to the protonation of the ¹⁷O site. Heteronuclear recoupling leads to splittings in the central-transition ¹⁷O spectra. However, the observed splittings are significantly smaller than expected from the OH distance as estimated by neutron diffraction. We discuss various explanations for these discrepancies below but cannot yet provide a definitive explanation. #### 2. Pulse sequences Fig. 1 shows two pulse sequences suitable for ${}^{1}H^{-17}O$ dipolar recoupling in the presence of MAS. Both methods Fig. 1. (A) PRESTO-II pulse sequence. Recoupling periods are denoted by R18 $_2^5$, where 18, 2, and 5 denote the symmetry numbers N, n, and ν of the recoupling sequence. The subscript to the recoupling period denotes the overall rf phase in degrees. The 17 O flip angles correspond to rotations in degrees of the central transition and the echo intervals T correspond to a fixed integer number of rotor periods $\tau_r = 2\pi/\omega_r$. (B) Sequence for generating a dipolar oscillation for a 1Q coherence. exploit symmetry-based recoupling sequences of the class RN_n^{ν} applied at the ¹H Larmor frequency. The selection rule theorems [24-26] allow one to choose symmetry numbers N, n, and v which implement recoupling of heteronuclear spin interactions, while removing the effect of ${}^{1}H-{}^{1}H$ spin interactions, to first order in average Hamiltonian theory. In all of the experiments described in this paper, we used a recoupling pulse sequence with the symmetry R18⁵, using the simplest possible basic element of a single 180° pulse. The R185 sequence consists of a repetition of the two-pulse element $180_{50}180_{-50}$, where the pulse flip angles and phases are specified in degrees, and the rf field strength corresponds to a nutation frequency of 4.5 times the MAS frequency. This sequence may be shown on symmetry grounds [24-27] to recouple the heteronuclear ¹H-¹⁷O dipole-dipole interactions whilst decoupling the homonuclear ¹H-¹H dipolar interactions. Note, however, that the R₁₈⁵ sequence also recouples the ¹H chemical shift anisotropy (CSA): in high magnetic fields, the recoupled proton chemical shift anisotropy can interfere with the heteronuclear recoupling performance, as is described below. In practice the sequence R18⁵₂ is especially suitable for heteronuclear recoupling experiments at a magic-angle spinning frequency of around 15–20 kHz (requiring rf field strengths of 67.5–90 kHz). Symmetries with different ratios of nutation frequency to spinning frequency are available [24–26]. For example, the sequence R18⁷₁ was used at 10 kHz MAS frequency, yielding similar results to the ones presented here (not shown). Fig. 1A shows the PRESTO-II (phase-shifted recoupling effects a smooth transfer of order) [27] pulse sequence. This method has already been used for heteronuclear polarization transfer in spin-1/2 systems. In the first interval, denoted τ_0 , a R18⁵ sequence is applied to the Zeeman-polarized ¹H nuclei, to decouple the ¹H–¹H interactions and recouple the ¹H–¹⁷O interactions. A state of transverse ¹H polarization, antiphase with respect to the ¹⁷O spin states, is generated at the end of τ_0 . A 90° pulse on the ¹⁷O central transition is applied, followed by evolution under a second R18⁵ sequence for an interval τ_1 . This second R18⁵ sequence has an overall phase shift of 90°, and need not be complete, so that in general it is not equal to an integer number of rotor periods. A 180° pulse is applied to the ¹⁷O central transition, and centred around a time point which is T after the end of the $^{17}\mathrm{O}~90^{\circ}$ pulse. The interval T must be equal to a constant integer number of rotor periods, independent of the value of τ_1 . ¹⁷O signals are acquired starting from an interval T after the centre of the ^{17}O 180° pulse. The lower half of the PRESTO-II pulse sequence corresponds to a rotor-synchronized Hahn echo applied to the ¹⁷O central transition, which refocuses the isotropic ¹⁷O chemical shift, the ¹⁷O chemical shift anisotropy, and the second-order ¹⁷O quadrupolar interaction. TPPM-modulated ¹H irradiation [28] is used to suppress heteronuclear interactions during that part of the spin echo which is not occupied by the R1825 sequence, and during signal acquisition. ### Download English Version: ## https://daneshyari.com/en/article/5407870 Download Persian Version: https://daneshyari.com/article/5407870 Daneshyari.com