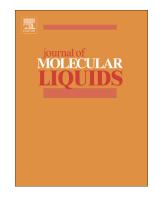
Accepted Manuscript


Removing lead ions from water by using nanocomposite (rare earth oxide/alumina)

M.A. Ahmed, Samiha T. Bishay, S.M. Abd-Elwahab, Rania Ramadan

PII:	80167-7322(17)30861-9
DOI:	doi: 10.1016/j.molliq.2017.05.122
Reference:	MOLLIQ 7414
To appear in:	Journal of Molecular Liquids
Received date:	28 February 2017
Revised date:	2 May 2017
Accepted date:	26 May 2017

Please cite this article as: M.A. Ahmed, Samiha T. Bishay, S.M. Abd-Elwahab, Rania Ramadan, Removing lead ions from water by using nanocomposite (rare earth oxide/ alumina), *Journal of Molecular Liquids* (2017), doi: 10.1016/j.molliq.2017.05.122

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Removing lead ions from water by using nano composite (rare earth oxide/alumina)

M. A. Ahmed⁽¹⁾, Samiha T. Bishay⁽²⁾, S. M. Abd-Elwahab⁽¹⁾ and Rania Ramadan^{(1)*}

⁽¹⁾ Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza Egypt. ⁽²⁾ Physics Department, Faculty of Girls for Arts, Science and Education, Ain Shams University, Cairo Egypt

Abstract

Alumina nanoparticles were prepared using reverse microemulsion method with particle size 3.8nm. Also, the precipitation method was utilized to prepare samarium and dysprosium oxides with particle size 14nm and 8.6nm respectively. Nano composites consist of $(x)R_2O_3/(100-x)y$ -Alumina; (x=16 and 44), (R=Sm and Dy) and (y= γ and α) were prepared with milling method. The characterization of all the prepared samples was studied using XRD analyses, transmitted electron microscope (TEM) and atomic force microscope (AFM). The removal efficiency of each prepared sample was measured using the atomic absorption spectroscopy. The study has clarified that the efficiency of the nano composite (x)Sm₂O₃/(100-x) γ -alumina; x=16 to remove lead ions from water after 24h is about 99.3%.

Keywords: A. composite, B. Chemical preparation, C. Atomic force microscope- TEM-XRDatomic absorption spectroscopy, D. crystal structure

*Corresponding author Dr. Rania Ramadan, rramadan@sci.cu.edu.eg

Download English Version:

https://daneshyari.com/en/article/5408106

Download Persian Version:

https://daneshyari.com/article/5408106

Daneshyari.com