Accepted Manuscript

Prediction of solubility of active pharmaceutical ingredients by semi- predictive Flory Huggins/Hansen model

Masood Valavi, Marko Ukrainczyk, Mohammad Reza Dehghani

PII: S0167-7322(17)32573-4

DOI: doi: 10.1016/j.molliq.2017.09.073

Reference: MOLLIQ 7910

To appear in: Journal of Molecular Liquids

Received date: 12 June 2017

Revised date: 11 September 2017 Accepted date: 19 September 2017

Please cite this article as: Masood Valavi, Marko Ukrainczyk, Mohammad Reza Dehghani, Prediction of solubility of active pharmaceutical ingredients by semi- predictive Flory Huggins/Hansen model, *Journal of Molecular Liquids* (2017), doi: 10.1016/j.molliq.2017.09.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Prediction of Solubility of Active Pharmaceutical Ingredients by Semi-

Predictive Flory Huggins/Hansen model

Masood Valavi¹, Marko Ukrainczyk¹, Mohammad Reza Dehghani²*

¹ Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, University of Limerick,

Limerick, Ireland

²Chemical engineering Department, Iran University of science and technology, Tehran, Iran

* Corresponding author; m_dehghani@iust.ac.ir

Abstract

In this work, solubility of four Active Pharmaceutical Ingredients (APIs) including Butyl

Paraben, Fenoxycarb, Fenofibrate and Risperidone were predicted using Hansen Flory

Huggins model using two different scenarios. In the first method, activity coefficient of APIs

were obtained through fitting the experimental activity coefficients of solvents at particular

temperature of 293 K, then components solubility in entire temperature range of study was

predicted. In the second scenario, the model parameters were adjusted using experimental

data of two selected solvents, then components solubility were predicted in other solvents. In

order to check the physical meanings of obtained values, Molecular Dynamic (MD)

simulations was utilized and the results were compared. Finally the predictive capabilities of

two Hansen Flory Huggins models were compared to temperature-dependent NRTL-SAC

model.

Keywords: Pharmaceuticals, Solubility prediction, Activity coefficient, Hansen Flory

Huggins model

1

Download English Version:

https://daneshyari.com/en/article/5408149

Download Persian Version:

https://daneshyari.com/article/5408149

<u>Daneshyari.com</u>