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A classical density functional theory has been used to study the structure and phase behavior of the electrical
double layer of a dense ionic liquid. Themodel for IL consists of a trimer cation (with a chargedhead and twoneu-
tral segments) and a monomer anion. The effect of dispersion interactions on the density profile and differential
capacitance curve has been investigated. Increasing the contribution of dispersion interactions leads to a camel-
shape differential capacitance curve. In the case of bell-shape curve, themaximum of the differential capacitance
increases with decreasing the dispersion forces. These observations are related to the depletion or accumulation
of ions near electrode with zero or low surface charge density.
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1. Introduction

An interfacial region called electrical double layer is formed when a
charged electrode is immersed in an electrolyte. Some experimental
and theoretical studies carried out to understand structure and perfor-
mance of electric double layers for applications in energy storage de-
vices [1–3]. Recently, room temperature ILs have been considered as a
promising electrolyte in electrical double layer capacitors (EDLC) be-
cause of their unique properties such as low volatility, low melting
point, high thermal stability and low toxicity [4,5]. Due to their high
ionic concentration, low dielectric constant and steric interactions, un-
derstanding performance of ILs at room temperature with charged in-
terfaces in electrical double layer (EDL) requires the use of an
advanced approach. One of the modern theories is the classical density
functional theory (DFT) [6–10], whichmay successfully incorporate ste-
ric effects and strong electrostatic correlations for an inhomogeneous
ILs.

Themost important property of an electrical double layer is differen-
tial capacitance. A number of theoretical studies have been reported to
understand the electrolyte/electrode interface behavior. Jiang et al.
[11] considereded EDL including hard sphere ions in the vicinity of a
planar charged surface and studied the effect of ion size and concentra-
tion on the differential capacitance using DFT. It was found that at low
ionic concentrations the curve of differential capacitance as a function
of surface potential (electrode surface charge density) has twomaxima,

and a minimum of the camel shape curve occurs at zero surface poten-
tial. At high ionic concentrations themodel produce a bell shape capac-
itance curve in which it's maximum coincide with zero surface
potential. Using modified Poisson-Boltzmann theory and simulation,
Lamperski et al. [12] obtained analogous results for a restricted primi-
tive model. Moreover, the experimental capacitance curves involving
room temperature ILs showed both camel-shape and bell-shape
[13–18]. To explain these experimental observations, Fedorov et al.
[19] performedMonte Carlo (MC) simulations for three different IL dou-
ble layers having the same anion modeled as a negatively charged
spherical segment and differing in the cation shape. The cation was
made of one charged segment (monomer), or two touching segments
(dimer), or three touching segments (trimer), in which the dimer and
trimer cations had a charged head and a neutral tail. A bell shape capac-
itance curve was obtained for the monomer cations, whereas a camel
shape was obtained for the dimer and trimer cations. The authors relat-
ed the observed camel shape curve to the neutral tail of cations inwhich
neutral segments act as latent voids which can be replaced by positive
segments. It was concluded that this rearrangement leads to the camel
shape curve.

The DFT calculations and MC simulations for the monomer and
dimer cations by Henderson et al. [20–23] showed that the shape of ca-
pacitance curve depends on the electrolyte charge concentration. The
results showed that the influence of neutral tails on the behavior of ca-
pacitance is a secondary effect. In these theoretical works, the disper-
sion interactions were disregarded, while the MC simulation
performed by Trulsson et al. [24] showed that dispersion interactions
play a significant role in the occurrence of camel shape capacitance
curve.
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In this work, for a dense IL, we aim to systematically investigate the
influence of dispersion forces on the EDL structure and the performance
of differential capacitance curve using DFT calculations. Themodel IL for
this study consists of trimer cations (each has a charged head and two
neutral segments) and monomer anions. In addition, in the absence of
chain connectivity we obtained a symmetric IL model and compared
its structure and behavior with our asymmetric model. The model pa-
rameters are consistent with the thermodynamic properties of ILs.

2. Theory

It is assumed that the IL is composed of an anion and a cation, in
which the anion is treated as a charged spherical segment and the cation
is modeled as a chain composed of a charged head and a neutral tail of
three tangentially bonded spherical segments. All segments interact
with each other through a square-well (SW) potential

ϕSW ¼
þ∞ rbσ
−ε σbrbλσ

0 rNλσ

8<
: ð1Þ

where σ is diameter of spherical segment, r is the distance between seg-
ment centers and λσ determines the range of the attractive interaction
of depth −ε. These parameters are assumed to be the same for all seg-
ments in an IL. The electrostatic interaction between charged segments
separated by a distance r is given by

ϕel
ij rð Þ ¼ qiqj

4πϵ0ϵrr
ð2Þ

where qi and qj are charge of interacting particles, ϵ0 is the permittivity
of vacuum and ϵr is relative dielectric constant. The quantity ϵr for ILs
was set at 12.5 based on the literature reports [25].

Themodel parameters (σ ,ε and λ)must be consistentwith the ther-
modynamic properties of a typical room temperature ILs. For this pur-
pose, in the frame work of an ionic based on statistical associating
fluid theory for potentials of variable range (SAFT-VR) [26] equation of
state (EOS), we calculated the parameters by means of fitting the
model predictions to experimental pρT data of [C6mim][BF4] over a
wide temperature and pressure ranges. The optimized parameters are:

σ ¼ 4:15� 10−10m; ε
kB
¼ 651 K and λ ¼ 1:49 , where kB is the

Boltzmann constant. In our pervious works [27–29] the SAFT approach
having rigorous physical foundation can successfully describe bulk
properties of ILs. In the ionic based SAFT-VR EOS used in the present
work, the excess Helmholtz energy for the bulk region is defined as

Aex ¼ Amono þ Achain þ Aion ð3Þ

where Amono represents monomer term, which includes repulsive and
dispersive contributions, Achain is the chain contribution to the free ener-
gy [30] and Aion is the contribution due to the ion-ion interaction, which
may be obtained from the solution of Ornstein-Zernicke equation for
the restricted primitive model with the mean-spherical approximation
(MSA) [31] given by [32]

Aion

NkBT
¼ −

3x2 þ 6xþ 2−2 1þ 2xð Þ32
12πρσ3 ð4Þ

where x=κσ, in which κ is the inverse of the Debye screening length
defined by.

κ2 ¼ 1
ϵ0ϵrkBT

∑2
j¼1ρ jq

2
j ð5Þ

In the classical DFT the grand potential of an inhomogeneous system
can be written as a function of density distribution. For the equilibrium
density profile, this potential reaches aminimumvalue. The equilibrium

density profile for the system including IL near charged surface using
the variation principle was obtained by

δΩ ρc Rð Þ;ρa rð Þ½ �
δρc Rð Þ ¼ δΩ ρc Rð Þ;ρa rð Þ½ �

δρa rð Þ ¼ 0 ð6Þ

where ρc(R) is the cation density, R denotes the position of the constit-
uent segments and ρa(r) is density of anion. The grand potential
Ω[ρc(R),ρa(r)] is given by

Ω ρc Rð Þ;ρa rð Þ½ � ¼ Fid ρc Rð Þ;ρa rð Þ½ � þ Fex ρc Rð Þ;ρa rð Þ½ �
þ
Z

V ext;c−μc

� �
ρc Rð ÞdRþ

Z
V ext;a−μa

� �
ρa rð Þdr ð7Þ

where Vext is the external potential. The ideal contribution to the free
energy functional is given by

Fid ρc Rð Þ;ρa rð Þ½ � ¼ kBT
Z

ln ρc Rð Þ−1½ �ρc Rð ÞdRþ
Z

ρc Rð ÞVb Rð ÞdR

þ kBT
Z

ln ρa rð Þ−1½ �ρc Rð ÞdR ð8Þ

where Vb(R)is the total bonding potential for tangentially connected
segments, which satisfies the expression [33]

exp −βVb Rð Þ½ � ¼
Ymc−1

j¼1

δ r jþ1−r j
�� ��−σ
� �

=4πσ2 ð9Þ

where δ(r) is the Dirac delta function and β ¼ 1
kBT

.
The excess Helmholtz free energy functional Fex is given by

Fex ¼ Fhs þ Fdisp þ Fchain þ FC þ Fel ð10Þ

where Fhs is the hard sphere contribution, Fdisp represents dispersion in-
teractions, Fchain is the chain connectivity contribution, FC takes into ac-
count direct Coulombic interactions and Fel represents the free energy
due to electrostatic correlations.

Using White-Bear version [34] of Rosenfeld's fundamental measure
theory (FMT) [35], the hard-sphere repulsion term is given by

βFhs ¼
Z

f hs nα rð Þf gð Þdr ð11Þ

where fhs, the reduced free energy density given by

f hs ¼ −n0 ln 1−n3ð Þ þ n1n2−nV1:nV2

1−n3

þ n3
2 1−ξ2
� �3 n3 þ 1−n3ð Þ2 ln 1−n3ð Þ

36πn2
3 1−n3ð Þ2

ð12Þ

in which

ξ rð Þ ¼ nV2 rð Þj j
n2 rð Þ ð13Þ

and fhs is expressed as a function of six weighted densities, nα(r),

nα rð Þ ¼ nαc rð Þ þ nαa rð Þ ¼
Z

ρs r0ð Þw αð Þ
s r−r0ð Þdr0

þ
Z

ρa r0ð Þw αð Þ
a r−r0ð Þdr0 ð14Þ

where ρs(r) is the total segment density of cation molecule including
neutral and positive segments, the subscripts α=0,1 ,2 ,3 and
α=V1,V2 denote scalar and vector weight functions, respectively:

w 2ð Þ rð Þ ¼ δ
σ
2
−r

� �
ð15Þ
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