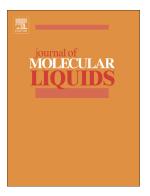
Accepted Manuscript

Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: Experimental, DFT and MD studies

V. Srivastava, Jiyaul Haque, C. Verma, P. Singh, H. Lgaz, R. Salghi, M.A. Quraishi

PII: S0167-7322(17)31227-8

DOI: doi: 10.1016/j.molliq.2017.08.049


Reference: MOLLIQ 7757

To appear in: Journal of Molecular Liquids

Received date: 21 March 2017 Revised date: 5 August 2017 Accepted date: 12 August 2017

Please cite this article as: V. Srivastava, Jiyaul Haque, C. Verma, P. Singh, H. Lgaz, R. Salghi, M.A. Quraishi, Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: Experimental, DFT and MD studies, *Journal of Molecular Liquids* (2017), doi: 10.1016/j.molliq.2017.08.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Amino acid Based Imidazolium Zwitterions as Novel and Green Corrosion Inhibitors for Mild Steel: Experimental, DFT and MD Studies

V. Srivastava¹, Jiyaul Haque¹, C. Verma^{1,3}, P. Singh¹, H. Lgaz^{4,5}, R. Salghi⁴, M.A. Quraishi^{1,2,*}

¹Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi
-221005, India.

²Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

³Material Science Innovation and Modelling (MaSIM) Research Focus Area, Department of Chemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa

⁴Laboratory of Applied Chemistry and Environment, ENSA, Universite Ibn Zohr, PO Box 1136, 80000 Agadir, Morocco.

⁵Laboratory of separation methods, Faculty of Science, Ibn Tofail University PO Box 242, Kenitra, Morocco,

*Corresponding author:

Ph.no. +91-9307025126

E-mail: maquraishi.apc@itbhu.ac.in

Abstract

Three novel amino acids based corrosion inhibitors namely 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl)acetate (AIZ-1), 2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl)propanoate (AIZ-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3-phenylpropanoate (AIZ-3) were synthesized by condensing glyoxal, formaldehyde and amino acids, and characterized. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical impedance (EIS) and potentiodynamic polarization (PDP) methods. Among the studied inhibitors, AIZ-3 showed the maximum inhibition efficiency (IE) of 96.08% at a concentration as low as 0.55 mM (200 ppm). The results of potentiodynamic study reveal that AIZ-1 acts as cathodic inhibitor while AIZ-2 and AIZ-3 act as mixed type inhibitors. The results of EIS studies showed that in the presence of inhibitors, polarization resistance increased and *C*_{dl}

Download English Version:

https://daneshyari.com/en/article/5408262

Download Persian Version:

https://daneshyari.com/article/5408262

<u>Daneshyari.com</u>