Accepted Manuscript

Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: An experimental study

Akbar Zareie, Mohammad Akbari

PII: S0167-7322(16)33479-1

DOI: doi: 10.1016/j.molliq.2017.01.043

Reference: MOLLIQ 6845

To appear in: Journal of Molecular Liquids

Received date: 4 November 2016 Revised date: 11 January 2017 Accepted date: 12 January 2017

Please cite this article as: Akbar Zareie, Mohammad Akbari, Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: An experimental study, *Journal of Molecular Liquids* (2017), doi: 10.1016/j.molliq.2017.01.043

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Hybrid nanoparticles effects on rheological behavior of water-EG coolant

under different temperatures: an experimental study

Akbar Zareie, Mohammad Akbari

Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University,

Najafabad, Iran

* Corresponding author

Email: m.akbari.g80@gmail.com

Abstract

In this paper, an experimental study has been conducted on the rheological behavior of

water-EG coolant in presence of MgO-MWCNTs hybrid nanomaterials. For this purpose,

nanofluid samples were prepared by suspending the nanomaterials in a mixture of water and

EG with solid volume fractions of 0.025%, 0.05%, 0.1%, 0.2%, 0.4%, 0.6% and 0.8%.

Viscosity measurements were performed at various shear rates and in the temperatures (25-

60°C). Experimental data showed that all hybrid nanofluid samples had Newtonian

behavior. Results showed that nanofluid viscosity decreased with increasing temperature

and augmented with increasing the volume fraction. Moreover, a comparison between the

experimental results of this study and those of other studies showed that the viscosity ratio

in the current study is higher than other studies. Eventually, a new accurate correlation was

developed to assist the calculation of the viscosity of the MgO-MWCNTs/water-EG at

different temperatures and volume fractions.

Keywords: Viscosity; Hybrid nanofluid; Water-EG; MgO nanoparticles; MWCNTs

1

Download English Version:

https://daneshyari.com/en/article/5408881

Download Persian Version:

https://daneshyari.com/article/5408881

Daneshyari.com