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A B S T R A C T

As one of the promising innovative methods of drug delivery, magnetic drug targeting (MDT) ideally con-
tains three main steps to treat localized diseases; chemically attaching drugs to magnetic nanoparticles and
their injection to a proper local blood stream, control and steering the cluster of particles in the arterial net-
work with a proper external magnetic field and finally, trapping them and releasing the drugs at the diseased
part of body. Focusing on the third step, some mathematical models, followed by uncountable numerical
simulations, have been developed; keeping in mind this fact that by having answers which are functions of
temporal, spatial and other related variables which make it possible to consider this kind of two-phase flows
much easier, homotopy analysis method (HAM) was used to solve one of the most comprehensive models
developed for such system. An artery-inspired geometry was a straight tube through which the supposed
mixture is passing. Due to demanding results, only four steps of Maclaurin series were able to be computed;
with this insufficient number of steps, acceptable accordance with numerical results was achieved.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Treating localized diseases like different kind of cancers, cardi-
vascular episodes like stenosis and thrombosis and of course, cell
ejection to some particular tissues are challenged by finding a way
to get medication to supposed locations. It is due to linked vessels in
body circulatory system. A way by which neither does the majority
of ejected drug waste nor toxic drugs affect healthy tissue.

These reasons make targeted drug delivery to be a continuing
challenge and active scientific field in medicine throughout last
two decades more particularly, magnetic drug targeting (MDT) is
considered as a great method to deal with this challenge and lower
the proposed deleterious side effects. In an ideal MDT process,
chemotherapeutic agents are bound on magnetic nano-particles
with some biocompatible composites and then ejected to a proper
local blood stream, moving the cluster of particles throughout the
bloodstream is observed by real-time imaging, and finally steered
them in circulatory system and hold at the diseased location. This
project focuses on the last stage of this process.

Different kinds of models are developed for this kind of
flows; Nacev et al. [1] stated and solved numerically a system of
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equations governing the diffusion, convection and magnetic trans-
port of nanoparticles in the blood and into surrounding tissue;
Lagrangian [2,3], Eulerian [2,4], two-phase mixture [2,5] and LTNE [6]
are ones that researchers use in their projects. In this project we
revisit a system of equations using two-phase mixture (as used in [7])
model developed to describe the behavior of magnetic nano drug car-
riers in a non-Newtonian fluid (blood) under an external magnetic
field [8] by using an improved version of Adomian decomposition
method in topology named homotopy analysis method (HAM). A
great method, developed by Liao [9,10], has shown its credibility
in analytical solution of numerous equations with strong nonlinear
terms like heat transfer in a porous channel [11] or under magnetic
field [12], diffusion and reaction in porous catalysts [13], nonhomo-
geneous Blasius problem [14] and MHD viscoelastic fluid flow in a
channel with a stretching wall [15]. However, till now, no one has
used this method in topology to solve such complicated system of
equations.

This method introduces an embedding parameter (q) by increas-
ing which from 0 to 1, this transformation is usually from zero-order,
the homotopy equation turns from an auxiliary equation (here a
linear one) to main nonlinear PDE (or ODE). By having this in mind,
briefly, we can find the expanded form of solution of homotopy
equation around q = 0 as a series; finally, approximate solution of
the original equations would be this series in which q is replaced
with 1.
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In this paper, we used divergence theorem [16] to turn the
numerical form of equations into PDE form that can be consid-
ered more mathematically and solved analytically. As it was pre-
dictable, demanding results were achieved; consequently, only 4 first
steps of Maclaurin series were computed. Further development to
compute more terms of Maclaurin series of solutions would be
required.

2. Theory

2.1. Numerical form of equations

The model suggested and modified by Cherry et al. [8] is the
homogeneous flow (or dusty gas approach) developed by Carrier [17]
which considers the cluster of particles as a variable continuum
moving throughout local flow. Here are some assumptions taken
in this model; firstly, the maximum volume fraction of particles
(c) is ¡ 1%; as a consequence, this system can be considered as an
incompressible one. Secondly, particle stoke number ( tpubulk

D ) is so
small (in order of 10−7) as a consequence of which, particle response
to surrounding flow is instant. Finally, all magnetic particles are
assumed to be in saturated state.

The system of equations modified by Cherry et al. is as fol-
lows which are continuity (Eq. (1)), scalar transform (Eq. (2)) and
momentum transport (Eq. (3)) equations respectively.

∫
s
uidsj = 0 (1)

∫
v

∂c
∂t

dv +
∫

s
cujdsj =

∫
s
(DBr + Dbl)

∂c
∂wj

dsj (2)

∫
v

∂(qmui)
∂t

dv +
∫

s
qmui(uj.dsj) =

∫
s
Pds +

∫
v
qmgidv

+
∫

v
Mj

∂Bi

∂xj
dv +

∫
s
l

(
∂ui

∂xj
+

∂uj

∂xi

)
dsj + Fint,i (3)

Table 1 introduces the variables used in above system of
equations.

2.2. Magnetic particles internal force

Here, Fint, i is the internal force of magnetic dipoles acting on
volume fraction expressed as follows [8]:

The force, every pair of magnetic dipoles acting on each other
with volumes V1 and V2, is as below where r̂ is dimensionless form,
with h =

3
√

Vcell
2 which Vcell denotes the average volume of numerical

Table 1
Variables corresponding to Eqs. (1) to (3).

Symbols Variable name Units

c Magnetic particle volume fraction –
g Acceleration of gravity m

s2

t Time s
u Fluid velocity m

s
w Spatial coordinate m
B Magnetic field T
DBl Diffusivity (particle/blood cell collisions) m2

s

DBr Brownian diffusivity m2

s
M Magnetization N

m2 T
P Pressure N

m2

S Grid cell surface area m2

V Grid cell volume m3

l Blood dynamic viscosity kg
ms

qm Density of mixture m3

mesh grids, of separation between two dipoles and m is magnetic
moments of them.

�Fint =
∫

v1

∫
v2

3l0c1c2

4p
∣∣r4

∣∣ (r̂ × �m) × �m + (r̂ × �m) × �m

− 2r̂( �m. �m) + 5r̂(r̂ × �m)(r̂ × �m)dV2dV1 (4)

c, l0 and V stand for magnetic particles volume fraction, magnetic
permeability and volume of control volume respectively.

Now, assume that subscripts 1 and 2 stand for the control volume
equations of which are written by Eqs. (1) to (3) and its surrounding
respectively.

However, this integration is divergent when r tends to zero; so,
Cherry et al. used the first term of Taylor expansion of this integral
around the local domain position and introduced an index, a ratio
correction and a weight function to correct the errors; it is unphysical
if we compute this force when r → 0, the force tends to infinity, so
it is used an index showing this fact that the nearest magnetic dipole
to local origin place is more than this supposed index (averagely, k
= 1.88 × 10−6). As the consequence, the net internal force applied
to control volume can be expressed as two below; the first term (F̂s)
is force acted on supposed control volume from distant surrounding
(k to infinity) and the second one is acted by nearer particles.

�Fint = �Fs + �f (5)

where

fx =
3l0M2c

4p
dc
dx

−23.87k − 0.5639
k3 + 0.919k2 + 0.3679k + 0.003827

(6)

fy =
−15l0M2c

4p
dc
dy

9.545k + 0.2256
k3 + 0.919k2 + 0.3679k + 0.003828

(7)

And

�Fs = (1 − W)�Fint

which after expansion is written as below:

Fsx =c
∫ 2p

0

∫ ∞

k
3 c l0

1 − W
4pr4

Rx(−4m2) cos h

+ 2m2 sin h + 5 m cos h(cos h − sin h)2)rdrdh (8)

Fsy =c
∫ 2p

0

∫ ∞

k
3 c l0

1 − W
4pr4

Ry(−4m2) sin h

+ 2m2 cos h + 5 m sin h(cos h − sin h)2)rdrdh (9)

More precisely, at every local position of domain, internal force
conduced by near magnetic dipole is shown by �f which is domi-
nated for near distance, and for far distance, it is �Fs that is dominant.
W, conveying this domination, and Rx and Ry are weighting function
and correcting ratio in x and y directions respectively showed by
followed equations.

If we introduce H as below

H = arctan
| sin h|
cos h

(10)

The, correction ratios in x and y directions would be

Ratiox = 1 + h2 −1.218H + 1.97
r2

(11)
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