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A B S T R A C T

We have theoretically studied the competing adsorption of the two- and three-component electrolytes
with different sizes and ionic valences near a semi-permeable shell. The present theory provides interesting
insights about the steric charge separation occurring at the shell, which cannot be explained by the lin-
earized and nonlinear Poisson-Boltzmann theories. The smaller and divalent ions interact more strongly
with the shell than the larger and monovalent ions because the smaller ions can approach more closely to
the shell surface and the divalent ions interact more strongly with the charged shell than the monovalent
ions. The large steric charge separation occurs at a highly asymmetric electrolyte and a high bulk concentra-
tion. The competition between the cations and anions gives rise to the charge reversal and charge inversion
even for an uncharged shell. A positively charged surface enhances the charge surface amplification because
the shell is impermeable for the anion, whereas a negatively charged surface enhances the charge reversal.
The excess osmotic pressure, which is based on a nonlinear Poisson-Boltzmann theory, depends only on the
permeated ion density at the shell, and increases with increasing the shell size and surface charge density.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The distribution of ions near charged surfaces has been a subject
with a long history of theoretical studies. One of the important
physicochemical question for electrolytes near a charged surface is
an understanding of how electrolytes affect the interfacial struc-
ture and how they are distributed close to the interfaces [1–3].
Donnan equilibria, which arise in the presence of semi-permeable
membranes, are of considerable importance in many areas of sci-
ence and technology. A great deal of research has recently been
devoted to understand the Donnan equilibria in charged systems
with the planar- and spherical-type semi-permeable membranes.
The aggregation and sedimentation stability of polyions in the semi-
permeable membranes filled with polyelectrolytes are strongly influ-
enced by ionic Donnan equilibrium between inside and outside
membranes, being impermeable to the large polyions, but allow-
ing the small counterions. Typical examples of such membrane are
vesicles and liposomes with ionic channels various types of polyelec-
trolyte microcapsules [4].

The ionic density distributions near a semi-permeable microcap-
sule have been studied by experiments [5–7] and theories [8–13].
For example, Vinogradova et al. [10,11] have applied the linearized
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Poisson-Boltzmann (PB) theory to study the electro-osmotic equi-
librium acting on a semi-permeable shell in polyion solution [14].
They have calculated the concentration profiles for the polyions
and counterions, and excess osmotic pressure of polyion solution
excluded on the shell. Tang and Denton [13] have theoretically
studied the ionic density deviations in a semi-permeable ionic
microcapsule by implementing the mean-field approach in a cell
model. However, their studies are limited to the linearized and
nonlinear PB theories. The neglect of the ion-ion correlation in
the nonlinear PB theory is generally valid for a weakly-correlated
monovalent ion, but questionable for more strongly correlated mul-
tivalent ions. Furthermore, the finite size and multivalence of the
electrolyte solution will affect the redistribution of ionic densities
i.e., steric charge separation, and the ionic density deviation inside
the membrane because the smaller and multivalent ions interact
more strongly with the membrane than large and monovalent ions.
The quantitative understanding of electrostatic interactions involv-
ing a semi-permeable membrane is still challenging. A reliable the-
ory for explaining the ionic density distribution inside and outside
the shell is needed. It is known that the density functional theory
(DFT), based both on the fundamental-measure theory (FMT) for
the hard sphere [15–17] and on the mean-spherical approximation
(MSA) [18–20] for the electrostatic residual contribution, provides
rational explanation for the structure of electrolytes over a wide
range of the electrolyte concentrations and surface charge densi-
ties. We will apply the DFT for studying the electrostatic interaction
between size-asymmetric ions in a semi-permeable shell. This work
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perhaps might be considered as additional evidence to highlight the
relevance of the ionic size asymmetry, excluded volume effects, and
ion correlations in a spherical geometry.

In this paper, we use the DFT, based on the FMT for the hard
spheres and MSA for a coupling of Coulombic and hard-sphere inter-
actions, to evaluate the ionic density distributions, cumulated charge
distributions, and correlation interactions between ions inside and
outside the shells. We compare our results with those obtained
from the computer simulations, as well as with the prediction of
nonlinear PB theory. We study the competing adsorption properties
of the two- and three-component electrolytes with different sizes
and ionic valences. We calculate the excess electro-osmotic pressure
(excess osmotic pressure) on the shell within the nonlinear PB the-
ory. Finally, we discuss the charge inversion, charge reversal, and
charge amplification of electrolyte solutions near a semi-permeable
shell.

2. Theory

The semi-permeable membrane is modeled as a spherical shell of
radius R immersed in the electrolyte solution. The shell has a uni-
form surface charge density Q = eZ/4pR2, where Z is the valence
and e the electronic charge. We consider a three-component prim-
itive electrolyte. The ions are taken to be the charged hard spheres
of diameter s i with a centered point charge ezi. Two types of ions
with the diameter s i (here, i = 1 and 2) can permeate freely through
the shell, whereas the shell excludes the third ion with the diame-
ter s3. In this case, the interaction between two ions is given by the
Coulomb force. The solvent is represented by a continuous dielectric
medium. For simplicity, we have assumed that the membrane dielec-
tric constant is equal to that of the solvent, such that the image forces
need not be considered.

For two types of ions which allows the permeation through the
shell, the ion density distribution qi(�r) is given by

ln
[
qi(�r)
qi

]
= −bezix(�r) + c(1)

hs,i

(�r; {
qi(�r)

}) − c(1)
hs,i({qi}) + c(1)

el,i

(�r; {
qi(�r)

})
−c(1)

el,i({qi}), i = 1, 2 (1)

where qi is the bulk density of ionic species i which can permeate
through the shell, x(�r) the mean electrostatic potential (MEP) due
to the combination of the Coulombic correlation with the external
potential, and b = 1/kBT the inverse temperature. For the third ion
which excludes inside the shell, it becomes

ln
[
q3(�r)
q3

]
= −bez3x(�r) + c(1)

hs,3(�r; {qi(�r)}) − c(1)
hs,3({qi})

+c(1)
el,3(�r; {qi(�r)}) − c(1)

el,3({qi}) r ≥ R + s3/2 (2)

where q3 is the bulk density of ionic species 3.
In Eqs. (1) and (2), c(1)

hs,i(�r; {qi(�r)}) and c(1)
el,i(�r; {qi(�r)}) are the one-

particle direct correlation functions (DCFs) for the hard-sphere
and the electronic residual contribution, respectively. For the one-
particle DCF for the hard spheres, c(1)

hs,i(�r; {qi(�r)}), we adopt the
Fundamental-measure theory (FMT) of Rosenfeld [15], which is
known to be a successful theory for the hard-sphere system

Fhs
[{qi(�r)}] =

∫
d�rVhs

[
na(�r)

]
(3)

where Vhs[na(�r)] is the excess free energy of a hard-sphere system
per volume. The system-averaged fundamental geometric measure
of the ions, na(�r), is assumed as na(�r) =

∑3
i=1

∫
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a

(∣∣�r − �s∣∣),
where yi

a(r) is the weight function depending on the geometrical
properties of species i. The set of four scalar and two vector weighting

functions are defined as yi
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yi
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2(�r)/2psi, where d(r) is the delta function and h(r) the
Heaviside step function. Then, c(1)
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As the approximation for the electronic residual contribution,
c(1)

el,i(�r; {qi(�r)}), we use the density functional Taylor expansion of

c(1)
el,i(�r; {qi(�r)}) with respect to the bulk density qi and only take the

first-order term in the Taylor expansion. Then, c(1)
el,i(�r; {qi(�r)}) becomes
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el,i({qi}) =
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(5)

where c(1)
el,i({qi}) is the electronic residual contribution in bulk phase

and c(2)
el,ij(r, {qi}) is the two-particle DCF for the electronic residual

contribution. An analytic expression for the charged hard-sphere
mixture provided by the MSA solution [18–20], which yields in
reasonable accuracy, has been used to calculate the two-particle DCF
c(2)

el,ij(r, {qi}).
The mean electrostatic potential (MEP) x(�r) due to the combina-

tion of the Coulombic correlation with the external potential satisfies
the Poisson equation

∇2x(�r) = − 4p
4
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where the boundary conditions for the electric field and potential at
r = R are given by
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It should be noted that at the center of spherical shell
(
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=
0. Then, the Poisson equation Eq. (6) can be written by
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