Accepted Manuscript

Influence of magnetic field on CNT- Polyethylene nanofluid flow over a permeable cylinder

P. Valipour, F. Shakeri Aski, M. Mirparizi


PII: S0167-7322(16)32575-2

DOI: doi:10.1016/j.molliq.2016.11.111

Reference: MOLLIQ 6658

To appear in: Journal of Molecular Liquids

Received date: 3 September 2016 Revised date: 24 October 2016 Accepted date: 25 November 2016

Please cite this article as: P. Valipour, F. Shakeri Aski, M. Mirparizi, Influence of magnetic field on CNT- Polyethylene nanofluid flow over a permeable cylinder, *Journal of Molecular Liquids* (2016), doi:10.1016/j.molliq.2016.11.111

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of magnetic field on CNT- Polyethylene nanofluid flow over a permeable cylinder P. Valipour¹, F. Shakeri Aski, M. Mirparizi a Department of Textile and Apparel, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran b Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran c Department of Mechanical Engineering, University of Yazd, Yazd, Iran

Abstract

In this paper, Lorentz force impact on CNT- Polyethylene nanofluid flow characteristics over a stretching permeable cylinder is studied using Runge-Kutta method. Similarity transformation has been applied to reach ODEs. Investigation has been completed by studying the impacts of nanoparticle volume fraction, injection parameter, Reynolds and magnetic numbers on nanofluid flow style. Results show that nanofluid velocity augments with rise of CNT volume fraction and injection parameter but it reduces with rise of magnetic number.

Keywords: Nanofluid; Stretching cylinder; CNT- Polyethylene; Boundary layer; Injection; Magnetic field.

Nomenclature

a C	radius of	γ	suction/injecti
	cylinder		on parameter
	positive	ρ	fluid density
	constant		
*	velocity of the		kinematic
W_{w}	stretching	υ	viscosity
	cylinder		viscosity
	dimensionless		
f	stream	Subscripts	
	function		
p	pressure	S	Nano-solid-

¹ Corresponding Author:

Email: p.valipour123@gmail.com (P. Valipour), f.shakeriaski@gmail.com (F. Shakeri Aski)

Download English Version:

https://daneshyari.com/en/article/5409269

Download Persian Version:

https://daneshyari.com/article/5409269

<u>Daneshyari.com</u>